Literatura científica selecionada sobre o tema "Conductivity"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Conductivity".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Conductivity"

1

Tamasan, A., e A. Timonov. "COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING". Eurasian Journal of Mathematical and Computer Applications 2, n.º 1 (2014): 5–29. http://dx.doi.org/10.32523/2306-3172-2014-2-2-5-29.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tamasan, A., e A. Timonov. "COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING". Eurasian Journal of Mathematical and Computer Applications 2, n.º 3 (2014): 5–29. http://dx.doi.org/10.32523/2306-3172-2014-2-3-5-29.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Romano, Claudia, Brent T. Poe, James Tyburczy e Fabrizio Nestola. "Electrical conductivity of hydrous wadsleyite". European Journal of Mineralogy 21, n.º 3 (29 de junho de 2009): 615–22. http://dx.doi.org/10.1127/0935-1221/2009/0021-1933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Donovan, Ryan, Karyanto Karyanto e Ordas Dewanto. "STUDI SIFAT TERMAL BATUAN DAERAH LAPANGAN PANAS BUMI WAY RATAI BERDASARKAN PENGUKURAN METODE KONDUKTIVITAS TERMAL". Jurnal Geofisika Eksplorasi 4, n.º 3 (17 de janeiro de 2020): 103–19. http://dx.doi.org/10.23960/jge.v4i3.44.

Texto completo da fonte
Resumo:
Research on Way Ratai geothermal field has been done by measuring the thermal conductivity method. The thermal conductivity data is used to generate a map of the dispersion of heat conductively conductive rocks in the geothermal system. The result of measurement by thermal conductivity method in Way Ratai geothermal field is data of k (conductivity), Rt (thermal resistivity), and T (temperature). The value of the measured conductivity data in the geothermal field has range between 0.056-0.664 W/mK, the measured thermal resistivity value has range between 1.344-17.527mK/W, and the measured temperature value is between 22.68-52.59°C. The difference value of rock’s thermal conductivity is influenced by several factors, which is the existing geological structures in the field such as normal faults and lineaments, the presence of alteration, also the manifestation zone of hot water or hot vapor that caused from fumaroles.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hawkes, Stephen J. "Conductivity". Journal of Chemical Education 86, n.º 4 (abril de 2009): 431. http://dx.doi.org/10.1021/ed086p431.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bohuslávek, Zdeněk. "The measurement method of meat conductivity". Czech Journal of Food Sciences 36, No. 5 (8 de novembro de 2018): 372–77. http://dx.doi.org/10.17221/164/2018-cjfs.

Texto completo da fonte
Resumo:
This paper analyses the properties of electrode methods and contactless inductive methods of the conductivity measurement of biological tissue, which are one of the few which are able to measure the potentials of corresponding components of complex conductivity, i.e. the real reactive conductivity of a resistive and an imaginary component. The analysis was performed by computer modelling and experimental measurements. The publication describes the modelling of currents and of the potential by electrode and methods on tissue phantoms using the finite element method. The Comsol Multiphysics v3.4 program was used for the calculations. The results are presented in 2D and 3D diagrams. Experimental measurements with electrodes in phantom tissues with different conductivity were also conducted and the components of the complex conductivity were evaluated with an RLC Bridge and most accurately by using a lock-in amplifier. Results and experience from the experiments will make it possible to proceed with the next phase of research focused on measuring conductivity and dielectric properties in different types of meat.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

dos Santos, Roberto Aguiar, Bruno Guimarães Delgado, Ana Luisa Cezar Rissoli, João Paulo de Sousa Silva e Michéle Dal Toé Casagrande. "Influence of initial compaction and confining pressure on the hydraulic conductivity of compacted iron ore tailings". E3S Web of Conferences 544 (2024): 14005. http://dx.doi.org/10.1051/e3sconf/202454414005.

Texto completo da fonte
Resumo:
The hydraulic conductivity of iron tailings is an important factor affecting the stability of tailings storage facilities. Stacking compacted filtered ore tailings is a promising alternative for safer tailings disposal. These tailings storage facilities’ internal drainage systems must be designed appropriately to avoid excessive seepage pressure, saturation, and slope failure. In this context, the factors that affect hydraulic conductivity must be adequately evaluated. Therefore, the hydraulic conductivity behavior of compacted iron ore tailings still needs to be investigated. In addition, the effect of high confining pressure on hydraulic conductivity needs to be evaluated. This study investigates the impact of the initial compaction and the confining pressure on hydraulic conductivity. For this, the flexible wall permeameter tests were carried out on filtered ore tailings compacted in three degrees of compaction: 77, 94, and 101% of optimum dry density as determined by the standard Proctor method. These specimens were saturated and then consolidated with different confining pressure. It is possible to affirm that the increased confining pressure decreases the hydraulic conductivity. The hydraulic conductivity decreases by less than one order of magnitude, regardless of the initial compaction. Moreover, the data suggest that hydraulic conductivity’s decay rate depends on initial compaction—the hydraulic conductivity of the loose specimen decays at a greater rate than that of the dense specimens. However, the reductions of the void ratio under the confining pressure of 1600 kPa and 2200 kPa were not enough to decrease the hydraulic conductivity. Thus, under high-stress confining, the hydraulic conductivity becomes practically constant.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Dixit, Chandra Kumar, e Mohd Tauqeer Mohd. Tauqeer. "Conductivity Studies of Multilayer Thin Films". International Journal of Scientific Research 2, n.º 5 (1 de junho de 2012): 145–46. http://dx.doi.org/10.15373/22778179/may2013/51.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Zhanabaev, Z. Zh, T. Yu Grevtseva e M. K. Ibraimov. "Electrical conductivity of silicon quantum nanowires". Physical Sciences and Technology 2, n.º 1 (2015): 37–43. http://dx.doi.org/10.26577/2409-6121-2015-2-1-37-43.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Sural, M., e A. Ghosh. "Electrical conductivity and conductivity relaxation in glasses". Journal of Physics: Condensed Matter 10, n.º 47 (30 de novembro de 1998): 10577–86. http://dx.doi.org/10.1088/0953-8984/10/47/009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Conductivity"

1

Tardieu, Giliane. "Thermal conductivity prediction". Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/10014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Schroeder, Wade Anthony. "Conductivity Sensor Circuit". University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429537491.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sylvan, Keith. "RF electrolytic conductivity transducers". Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/11450.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Martin, Ana Isabel. "Hydrate Bearing Sediments-Thermal Conductivity". Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6844.

Texto completo da fonte
Resumo:
The thermal properties of hydrate bearing sediments remain poorly studied, in part due to measurement difficulties inside the hydrate stability envelope. In particular, there is a dearth of experimental data on hydrate-bearing sediments, and most available measurements and models correspond to bulk gas hydrates. However, hydrates in nature largely occur in porous media, e.g. sand, silt and clay. The purpose of this research is to determine the thermal properties of hydrate-bearing sediments under laboratory conditions, for a wide range of soils from coarse-grained sand to fine-grained silica flour and kaolinite. The thermal conductivity is measured before and after hydrate formation, at effective confining stress in the range from 0.03 MPa to 1 MPa. Results show the complex interplay between soil grain size, effective confinement and the amount of the pore space filled with hydrate on the thermal conductivity of hydrate-bearing sediments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mensah-Brown, Henry. "Thermal conductivity of liquid mixtures". Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362870.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Peralta, Martinez Maria Vita. "Thermal conductivity of molten metals". Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391505.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Jawad, Shadwan Hamid. "Thermal conductivity of polyatomic gases". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Williams, Oliver Aneurin. "Surface conductivity on hydrogenated diamond". Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405246.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Valter, Mikael. "Thermal Conductivity of Uranium Mononitride". Thesis, Linköpings universitet, Tunnfilmsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122337.

Texto completo da fonte
Resumo:
Thermal conductivity is a crucial parameter for nuclear fuel, as it sets an upper limit on reactor operating temperature to have safety margins. Uranium mononitride (UN) is a prospective fuel for fast reactors, for which limited experimental studies have been conducted, compared to the currently dominating light-water reactor fuel, uranium dioxide. The aim of this thesis is to determine the thermal conductivity in UN and to determine its porosity dependence. This was done by manufacturing dense and porous high-purity samples of UN and examining them with laser flash analysis, which with data on specific heat and thermal expansion gives the thermal conductivity. To analyse the result, a theoretical study of the phenomenology of thermal conductivity as well as a review and comparison with previous investigations were carried out. The porosity range was 0.1–31% of theoretical density. Thermal diffusivity data from laser flash analysis, thermal expansion data and specific heat data was collected for 25–1400 C. The laser flash data had high discrepancy at higher temperatures due to thermal instability in the device and deviations due to graphite deposition on the samples, but the low temperature data should be reliable. As the specific heat data was also of poor quality, literature data was used instead. As for the thermal diffusivity data, the calculated thermal conductivity for lower temperatures are more accurate. A modified version of the porosity model by Ondracek and Schulz was used to analyse the porosity dependence of the thermal conductivity, taking into account the different impacts of open and closed porosity.
Värmeledningsförmåga är en avgörande egenskap för kärnbränslen, eftersom det begränsar den maximala drifttemperaturen i reaktorn för att ha säkerhetsmarginaler. Uranmononitrid (UN) är ett framtida bränsle för snabba reaktorer. Jämfört med det dominerande bränslet i lättvattenreaktorer, urandioxid, har endast begränsade experimentella studier gjorts av UN. Målet med detta arbete är att bestämma värmeledningsförmågan i UN och bestämma dess porositetsberoende. Detta gjordes genom att tillverka kompakta och porösa prover av UN och undersöka dem med laserblixtmetoden, vilket tillsammans med värmekapacitet och värmeutvidgning ger värmeledningsförmågan. För att analysera resultatet gjordes en teoretisk studie av värmeledning såväl som en genomgång av och jämförelse med tidigare undersökningar. Provernas porositet sträckte sig från 0.1% till 31% av teoretisk densitet. Värmediffusivitetsdata från laserblixtmetoden, värmeutvidgningsdata och värmekapacitetsdata samlades in för 25–1400 C. Värdena från laserblixtmätningen hade hög diskrepans vid höga temperaturer p.g.a. termisk instabilitet i anordningen och avvikelser p.g.a. grafitavlagring på proverna, men data för låga temperaturer borde vara tillförlitliga. Eftersom resultaten från värmekapacitetsmätningen var av dålig kvalité, användes litteraturdata istället. Som en konsekvens av bristerna i mätningen av värmediffusivitet är presenterade data för värmeledningsförmåga mest exakta för låga temperaturer. En modifierad version av Ondracek-Schulz porositetsmodell användes för att analysera värmeledningsförmågans porositetsberoende genom att ta hänsyn till olika inverkan av öppen och sluten porositet.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Anderson, Stephen Ashcraft. "The thermal conductivity of intermetallics". Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/18185.

Texto completo da fonte
Resumo:
Includes bibliographical references.
The thermal conductivity of titanium aluminide and several ruthenium-aluminium alloys has been studied from room temperature up to 500°C. Ruthenium aluminide is a B2-type intermetallic which is unusual and of special interest because of its toughness, specific strength and stiffness, oxidation resistance and low cost. The possible use of ruthenium aluminide in high temperature industrial applications required an investigation of the thermal properties of this compound. Apparatus, capable of measuring thermal conductivity at elevated temperatures has been designed and constructed. This study represents the first experimental results for the thermal conductivity of ruthenium aluminide alloys. The electrical resistivity of the intermetallic compounds has been measured using apparatus based on the Van der Pauw method. The Weidman-Franz ratio of the ruthenium aluminide alloys has been calculated and this indicates that the primary source of heat conduction in these alloys is by electronic movement and that the lattice contribution is minor. The electrical and thermal properties of ruthenium aluminide are shown to be similar to that of platinum and nickel aluminide. This has important implications for the use of these alloys in high temperature applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Conductivity"

1

International, Thermal Conductivity Conference (18th 1983 Rapid City S. D. ). Thermal conductivity 18. New York: Plenum Press, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wilkes, Kenneth E., Ralph B. Dinwiddie e Ronald S. Graves. Thermal Conductivity 23. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hasselman, D. P. H., e J. R. Thomas, eds. Thermal Conductivity 20. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ashworth, T., e David R. Smith, eds. Thermal Conductivity 18. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Merrill, S. D. Hydraulic conductivity techniques. S.l: s.n, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

1937-, Yarbrough D. W., ed. Thermal conductivity 19. New York: Plenum Press, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

International Thermal Conductivity Conference (21st 1989 Lexington, Ky.). Thermal conductivity 21. New York: Plenum Press, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

International Thermal Conductivity Conference (22nd 1993 Arizona State University). Thermal conductivity 22. Lancaster, Penn: Technomic Pub. Co., 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hasselman, D. P. H. Thermal Conductivity 20. Boston, MA: Springer US, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Association, Copper Development, ed. High conductivity coppers. Potters Bar: Copper Development Association, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Conductivity"

1

de Freitas, Michael. "Conductivity". In Selective Neck Dissection for Oral Cancer, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_66-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gooch, Jan W. "Conductivity". In Encyclopedic Dictionary of Polymers, 165. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2815.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Pomeranz, Yeshajahu, e Clifton E. Meloan. "Conductivity". In Food Analysis, 199–207. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-6998-5_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

de Freitas, Michael. "Conductivity". In Encyclopedia of Earth Sciences Series, 180–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_66.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

McGurn, Arthur. "Conductivity". In An Introduction to Condensed Matter Physics for the Nanosciences, 17–67. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003031987-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

McGurn, Arthur. "Conductivity". In An Introduction to Condensed Matter Physics for the Nanosciences, 69–87. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003031987-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lauth, Jakob SciFox. "Conductivity". In Physical Chemistry in a Nutshell, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67637-0_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Haider, S. A. "Conductivity". In Aeronomy of Mars, 205–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3138-5_23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dukhin, Stanislav S., Ralf Zimmermann e Carsten Werner. "Surface Conductivity". In Electrical Phenomena at Interfaces and Biointerfaces, 95–126. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118135440.ch7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gooch, Jan W. "Conductivity (Electrical)". In Encyclopedic Dictionary of Polymers, 165–66. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2816.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Conductivity"

1

HUA, ZILONG, YUEFANG DONG e HENG BAN. "Thermal Conductivity Measurement of Ion-irradiated Materials". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30351.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

GOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK e ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

HUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON e MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

SONG, ZHUORUI, TYSON WATKINS e HENG BAN. "Measurement of Thermal Diffusivity at High Temperature by Laser Flash Method". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30334.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

CASTIGLIONE, PAOLO, e GAYLON CAMPBELL. "Improved Transient Method Measures Thermal Conductivity of Insulating Materials". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

GARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK e HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

DEHN, SUSANNE, ERIK RASMUSSEN e CRISPIN ALLEN. "Round Robin Test of Thermal Conductivity for a Loose Fill Thermal Insulation Product in Europe". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30337.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

ILLKOVA, KSENIA, RADEK MUSALEK e JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

LAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER e ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

YARBROUGH, DAVID W., e MICHEL P. DROUIN. "Long-Term Thermal Resistance of Thin Cellular Plastic Insulations". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30340.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Conductivity"

1

Wilkinson, A., e A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Clark, D. Thermal Conductivity of Helium. Office of Scientific and Technical Information (OSTI), agosto de 1992. http://dx.doi.org/10.2172/1031796.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

M.J. Anderson, H.M. Wade e T.L. Mitchell. Invert Effective Thermal Conductivity Calculation. US: Yucca Mountain Project, Las Vegas, Nevada, março de 2000. http://dx.doi.org/10.2172/894317.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Leader, D. R. Thermal conductivity of cane fiberboard. Office of Scientific and Technical Information (OSTI), maio de 1995. http://dx.doi.org/10.2172/402292.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wang, H. Thermal conductivity Measurements of Kaolite. Office of Scientific and Technical Information (OSTI), fevereiro de 2003. http://dx.doi.org/10.2172/885883.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Braams, B. J., e C. F. F. Karney. Conductivity of a relativistic plasma. Office of Scientific and Technical Information (OSTI), março de 1989. http://dx.doi.org/10.2172/6392639.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bauer, R., W. Windl, L. Collins, J. Kress e I. Kwon. Electrical conductivity of compressed argon. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/642761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Allcorn, Eric. Conductivity Impact of BFR Additive. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1426056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Allcorn, Eric. Conductivity Impact of BFR Additive. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1426399.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hin, Celine. Thermal Conductivity of Metallic Uranium. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1433931.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia