Literatura científica selecionada sobre o tema "Conductivity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Conductivity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Conductivity"
Tamasan, A., e A. Timonov. "COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING". Eurasian Journal of Mathematical and Computer Applications 2, n.º 1 (2014): 5–29. http://dx.doi.org/10.32523/2306-3172-2014-2-2-5-29.
Texto completo da fonteTamasan, A., e A. Timonov. "COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING". Eurasian Journal of Mathematical and Computer Applications 2, n.º 3 (2014): 5–29. http://dx.doi.org/10.32523/2306-3172-2014-2-3-5-29.
Texto completo da fonteRomano, Claudia, Brent T. Poe, James Tyburczy e Fabrizio Nestola. "Electrical conductivity of hydrous wadsleyite". European Journal of Mineralogy 21, n.º 3 (29 de junho de 2009): 615–22. http://dx.doi.org/10.1127/0935-1221/2009/0021-1933.
Texto completo da fonteDonovan, Ryan, Karyanto Karyanto e Ordas Dewanto. "STUDI SIFAT TERMAL BATUAN DAERAH LAPANGAN PANAS BUMI WAY RATAI BERDASARKAN PENGUKURAN METODE KONDUKTIVITAS TERMAL". Jurnal Geofisika Eksplorasi 4, n.º 3 (17 de janeiro de 2020): 103–19. http://dx.doi.org/10.23960/jge.v4i3.44.
Texto completo da fonteHawkes, Stephen J. "Conductivity". Journal of Chemical Education 86, n.º 4 (abril de 2009): 431. http://dx.doi.org/10.1021/ed086p431.
Texto completo da fonteBohuslávek, Zdeněk. "The measurement method of meat conductivity". Czech Journal of Food Sciences 36, No. 5 (8 de novembro de 2018): 372–77. http://dx.doi.org/10.17221/164/2018-cjfs.
Texto completo da fontedos Santos, Roberto Aguiar, Bruno Guimarães Delgado, Ana Luisa Cezar Rissoli, João Paulo de Sousa Silva e Michéle Dal Toé Casagrande. "Influence of initial compaction and confining pressure on the hydraulic conductivity of compacted iron ore tailings". E3S Web of Conferences 544 (2024): 14005. http://dx.doi.org/10.1051/e3sconf/202454414005.
Texto completo da fonteDixit, Chandra Kumar, e Mohd Tauqeer Mohd. Tauqeer. "Conductivity Studies of Multilayer Thin Films". International Journal of Scientific Research 2, n.º 5 (1 de junho de 2012): 145–46. http://dx.doi.org/10.15373/22778179/may2013/51.
Texto completo da fonteZhanabaev, Z. Zh, T. Yu Grevtseva e M. K. Ibraimov. "Electrical conductivity of silicon quantum nanowires". Physical Sciences and Technology 2, n.º 1 (2015): 37–43. http://dx.doi.org/10.26577/2409-6121-2015-2-1-37-43.
Texto completo da fonteSural, M., e A. Ghosh. "Electrical conductivity and conductivity relaxation in glasses". Journal of Physics: Condensed Matter 10, n.º 47 (30 de novembro de 1998): 10577–86. http://dx.doi.org/10.1088/0953-8984/10/47/009.
Texto completo da fonteTeses / dissertações sobre o assunto "Conductivity"
Tardieu, Giliane. "Thermal conductivity prediction". Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/10014.
Texto completo da fonteSchroeder, Wade Anthony. "Conductivity Sensor Circuit". University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429537491.
Texto completo da fonteSylvan, Keith. "RF electrolytic conductivity transducers". Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/11450.
Texto completo da fonteMartin, Ana Isabel. "Hydrate Bearing Sediments-Thermal Conductivity". Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6844.
Texto completo da fonteMensah-Brown, Henry. "Thermal conductivity of liquid mixtures". Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362870.
Texto completo da fontePeralta, Martinez Maria Vita. "Thermal conductivity of molten metals". Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391505.
Texto completo da fonteJawad, Shadwan Hamid. "Thermal conductivity of polyatomic gases". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367922.
Texto completo da fonteWilliams, Oliver Aneurin. "Surface conductivity on hydrogenated diamond". Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405246.
Texto completo da fonteValter, Mikael. "Thermal Conductivity of Uranium Mononitride". Thesis, Linköpings universitet, Tunnfilmsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122337.
Texto completo da fonteVärmeledningsförmåga är en avgörande egenskap för kärnbränslen, eftersom det begränsar den maximala drifttemperaturen i reaktorn för att ha säkerhetsmarginaler. Uranmononitrid (UN) är ett framtida bränsle för snabba reaktorer. Jämfört med det dominerande bränslet i lättvattenreaktorer, urandioxid, har endast begränsade experimentella studier gjorts av UN. Målet med detta arbete är att bestämma värmeledningsförmågan i UN och bestämma dess porositetsberoende. Detta gjordes genom att tillverka kompakta och porösa prover av UN och undersöka dem med laserblixtmetoden, vilket tillsammans med värmekapacitet och värmeutvidgning ger värmeledningsförmågan. För att analysera resultatet gjordes en teoretisk studie av värmeledning såväl som en genomgång av och jämförelse med tidigare undersökningar. Provernas porositet sträckte sig från 0.1% till 31% av teoretisk densitet. Värmediffusivitetsdata från laserblixtmetoden, värmeutvidgningsdata och värmekapacitetsdata samlades in för 25–1400 C. Värdena från laserblixtmätningen hade hög diskrepans vid höga temperaturer p.g.a. termisk instabilitet i anordningen och avvikelser p.g.a. grafitavlagring på proverna, men data för låga temperaturer borde vara tillförlitliga. Eftersom resultaten från värmekapacitetsmätningen var av dålig kvalité, användes litteraturdata istället. Som en konsekvens av bristerna i mätningen av värmediffusivitet är presenterade data för värmeledningsförmåga mest exakta för låga temperaturer. En modifierad version av Ondracek-Schulz porositetsmodell användes för att analysera värmeledningsförmågans porositetsberoende genom att ta hänsyn till olika inverkan av öppen och sluten porositet.
Anderson, Stephen Ashcraft. "The thermal conductivity of intermetallics". Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/18185.
Texto completo da fonteThe thermal conductivity of titanium aluminide and several ruthenium-aluminium alloys has been studied from room temperature up to 500°C. Ruthenium aluminide is a B2-type intermetallic which is unusual and of special interest because of its toughness, specific strength and stiffness, oxidation resistance and low cost. The possible use of ruthenium aluminide in high temperature industrial applications required an investigation of the thermal properties of this compound. Apparatus, capable of measuring thermal conductivity at elevated temperatures has been designed and constructed. This study represents the first experimental results for the thermal conductivity of ruthenium aluminide alloys. The electrical resistivity of the intermetallic compounds has been measured using apparatus based on the Van der Pauw method. The Weidman-Franz ratio of the ruthenium aluminide alloys has been calculated and this indicates that the primary source of heat conduction in these alloys is by electronic movement and that the lattice contribution is minor. The electrical and thermal properties of ruthenium aluminide are shown to be similar to that of platinum and nickel aluminide. This has important implications for the use of these alloys in high temperature applications.
Livros sobre o assunto "Conductivity"
International, Thermal Conductivity Conference (18th 1983 Rapid City S. D. ). Thermal conductivity 18. New York: Plenum Press, 1985.
Encontre o texto completo da fonteWilkes, Kenneth E., Ralph B. Dinwiddie e Ronald S. Graves. Thermal Conductivity 23. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719.
Texto completo da fonteHasselman, D. P. H., e J. R. Thomas, eds. Thermal Conductivity 20. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7.
Texto completo da fonteAshworth, T., e David R. Smith, eds. Thermal Conductivity 18. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7.
Texto completo da fonteMerrill, S. D. Hydraulic conductivity techniques. S.l: s.n, 1987.
Encontre o texto completo da fonte1937-, Yarbrough D. W., ed. Thermal conductivity 19. New York: Plenum Press, 1988.
Encontre o texto completo da fonteInternational Thermal Conductivity Conference (21st 1989 Lexington, Ky.). Thermal conductivity 21. New York: Plenum Press, 1990.
Encontre o texto completo da fonteInternational Thermal Conductivity Conference (22nd 1993 Arizona State University). Thermal conductivity 22. Lancaster, Penn: Technomic Pub. Co., 1994.
Encontre o texto completo da fonteHasselman, D. P. H. Thermal Conductivity 20. Boston, MA: Springer US, 1989.
Encontre o texto completo da fonteAssociation, Copper Development, ed. High conductivity coppers. Potters Bar: Copper Development Association, 1990.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Conductivity"
de Freitas, Michael. "Conductivity". In Selective Neck Dissection for Oral Cancer, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_66-1.
Texto completo da fonteGooch, Jan W. "Conductivity". In Encyclopedic Dictionary of Polymers, 165. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2815.
Texto completo da fontePomeranz, Yeshajahu, e Clifton E. Meloan. "Conductivity". In Food Analysis, 199–207. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-6998-5_14.
Texto completo da fontede Freitas, Michael. "Conductivity". In Encyclopedia of Earth Sciences Series, 180–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_66.
Texto completo da fonteMcGurn, Arthur. "Conductivity". In An Introduction to Condensed Matter Physics for the Nanosciences, 17–67. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003031987-2.
Texto completo da fonteMcGurn, Arthur. "Conductivity". In An Introduction to Condensed Matter Physics for the Nanosciences, 69–87. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003031987-3.
Texto completo da fonteLauth, Jakob SciFox. "Conductivity". In Physical Chemistry in a Nutshell, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67637-0_11.
Texto completo da fonteHaider, S. A. "Conductivity". In Aeronomy of Mars, 205–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3138-5_23.
Texto completo da fonteDukhin, Stanislav S., Ralf Zimmermann e Carsten Werner. "Surface Conductivity". In Electrical Phenomena at Interfaces and Biointerfaces, 95–126. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118135440.ch7.
Texto completo da fonteGooch, Jan W. "Conductivity (Electrical)". In Encyclopedic Dictionary of Polymers, 165–66. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2816.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Conductivity"
HUA, ZILONG, YUEFANG DONG e HENG BAN. "Thermal Conductivity Measurement of Ion-irradiated Materials". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30351.
Texto completo da fonteGOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK e ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.
Texto completo da fonteHUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON e MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.
Texto completo da fonteSONG, ZHUORUI, TYSON WATKINS e HENG BAN. "Measurement of Thermal Diffusivity at High Temperature by Laser Flash Method". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30334.
Texto completo da fonteCASTIGLIONE, PAOLO, e GAYLON CAMPBELL. "Improved Transient Method Measures Thermal Conductivity of Insulating Materials". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30335.
Texto completo da fonteGARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK e HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.
Texto completo da fonteDEHN, SUSANNE, ERIK RASMUSSEN e CRISPIN ALLEN. "Round Robin Test of Thermal Conductivity for a Loose Fill Thermal Insulation Product in Europe". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30337.
Texto completo da fonteILLKOVA, KSENIA, RADEK MUSALEK e JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.
Texto completo da fonteLAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER e ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.
Texto completo da fonteYARBROUGH, DAVID W., e MICHEL P. DROUIN. "Long-Term Thermal Resistance of Thin Cellular Plastic Insulations". In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30340.
Texto completo da fonteRelatórios de organizações sobre o assunto "Conductivity"
Wilkinson, A., e A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.
Texto completo da fonteClark, D. Thermal Conductivity of Helium. Office of Scientific and Technical Information (OSTI), agosto de 1992. http://dx.doi.org/10.2172/1031796.
Texto completo da fonteM.J. Anderson, H.M. Wade e T.L. Mitchell. Invert Effective Thermal Conductivity Calculation. US: Yucca Mountain Project, Las Vegas, Nevada, março de 2000. http://dx.doi.org/10.2172/894317.
Texto completo da fonteLeader, D. R. Thermal conductivity of cane fiberboard. Office of Scientific and Technical Information (OSTI), maio de 1995. http://dx.doi.org/10.2172/402292.
Texto completo da fonteWang, H. Thermal conductivity Measurements of Kaolite. Office of Scientific and Technical Information (OSTI), fevereiro de 2003. http://dx.doi.org/10.2172/885883.
Texto completo da fonteBraams, B. J., e C. F. F. Karney. Conductivity of a relativistic plasma. Office of Scientific and Technical Information (OSTI), março de 1989. http://dx.doi.org/10.2172/6392639.
Texto completo da fonteBauer, R., W. Windl, L. Collins, J. Kress e I. Kwon. Electrical conductivity of compressed argon. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/642761.
Texto completo da fonteAllcorn, Eric. Conductivity Impact of BFR Additive. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1426056.
Texto completo da fonteAllcorn, Eric. Conductivity Impact of BFR Additive. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1426399.
Texto completo da fonteHin, Celine. Thermal Conductivity of Metallic Uranium. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1433931.
Texto completo da fonte