Literatura científica selecionada sobre o tema "Computer interfaces"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Computer interfaces".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Computer interfaces"
Pepperberg, Irene M. "Animal-computer interfaces". Interaction Studies 24, n.º 2 (3 de novembro de 2023): 193–200. http://dx.doi.org/10.1075/is.23018.pep.
Texto completo da fonteAllan, K. "Inspiring interfaces [computer game interfaces]". Engineering & Technology 2, n.º 5 (1 de maio de 2007): 34–36. http://dx.doi.org/10.1049/et:20070503.
Texto completo da fonteBartz, Christina. "Der Computer in der Küche". Zeitschrift für Medien- und Kulturforschung 9, n.º 2 (2018): 13–26. http://dx.doi.org/10.28937/1000108172.
Texto completo da fonteBogdanova, Nellija. "PRINCIPLES OF USER-CENTERED DESIGN". Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (20 de junho de 2001): 245. http://dx.doi.org/10.17770/etr2001vol1.1921.
Texto completo da fonteLi, Jiayi. "Brain-computer interface for the treatment of mental illness". Theoretical and Natural Science 16, n.º 1 (4 de dezembro de 2023): 93–96. http://dx.doi.org/10.54254/2753-8818/16/20240539.
Texto completo da fontePeters, Gabriele. "Criteria for the Creation of Aesthetic Images for Human-Computer Interfaces A Survey for Computer Scientists". International Journal of Creative Interfaces and Computer Graphics 2, n.º 1 (janeiro de 2011): 68–98. http://dx.doi.org/10.4018/jcicg.2011010105.
Texto completo da fonteWilliams, Evelyn, e Evelyn Hewlett-Packard. "Panel on Visual Interface Design". Proceedings of the Human Factors Society Annual Meeting 33, n.º 5 (outubro de 1989): 323–24. http://dx.doi.org/10.1177/154193128903300519.
Texto completo da fonteYoung, Michael J., David J. Lin e Leigh R. Hochberg. "Brain–Computer Interfaces in Neurorecovery and Neurorehabilitation". Seminars in Neurology 41, n.º 02 (19 de março de 2021): 206–16. http://dx.doi.org/10.1055/s-0041-1725137.
Texto completo da fonteGao, Xiaorong, Yijun Wang, Xiaogang Chen e Shangkai Gao. "Interface, interaction, and intelligence in generalized brain–computer interfaces". Trends in Cognitive Sciences 25, n.º 8 (agosto de 2021): 671–84. http://dx.doi.org/10.1016/j.tics.2021.04.003.
Texto completo da fonteChao, Dennis L. "Computer games as interfaces". Interactions 11, n.º 5 (setembro de 2004): 71–72. http://dx.doi.org/10.1145/1015530.1015567.
Texto completo da fonteTeses / dissertações sobre o assunto "Computer interfaces"
Ward, David James. "Adaptive computer interfaces". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620273.
Texto completo da fonteRihan, Jonathan. "Computer vision based interfaces for computer games". Thesis, Oxford Brookes University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579554.
Texto completo da fonteHawthorn, Dan. "Designing Effective Interfaces for Older Users". The University of Waikato, 2006. http://hdl.handle.net/10289/2538.
Texto completo da fonteHalder, Sebastian [Verfasser]. "Prediction of Brain-Computer Interface Performance: For P300 and Motor Imagery Brain-Computer Interfaces / Sebastian Halder". München : Verlag Dr. Hut, 2011. http://d-nb.info/1015607330/34.
Texto completo da fonteHobro, Mark, e Marcus Heine. "Natural Language Interfaces in Computer Games". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166592.
Texto completo da fonteZajicek, Mary Pamela. "The usability of alternative computer interfaces". Thesis, Oxford Brookes University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251356.
Texto completo da fonteWong, Shu-Fai. "Motion recognition for human-computer interfaces". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613368.
Texto completo da fonteYeung, C. "Spectroscopic analysis of nanodielectric interfaces". Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/358897/.
Texto completo da fonteMynatt, Elizabeth D. "Transforming graphical interfaces into auditory interfaces". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/9209.
Texto completo da fonteSebastián, Romagosa Marc. "Brain computer interfaces for brain acquired damage". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.
Texto completo da fonteEl término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
Livros sobre o assunto "Computer interfaces"
Marquez-Chin, Cesar, Naaz Kapadia-Desai e Sukhvinder Kalsi-Ryan. Brain–Computer Interfaces. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01608-0.
Texto completo da fonteHassanien, Aboul Ella, e Ahmad Taher Azar, eds. Brain-Computer Interfaces. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10978-7.
Texto completo da fonteGraimann, Bernhard, Gert Pfurtscheller e Brendan Allison, eds. Brain-Computer Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02091-9.
Texto completo da fonteTan, Desney S., e Anton Nijholt, eds. Brain-Computer Interfaces. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8.
Texto completo da fonteBerger, Theodore W., John K. Chapin, Greg A. Gerhardt, Dennis J. McFarland, José C. Principe, Walid V. Soussou, Dawn M. Taylor e Patrick A. Tresco. Brain-Computer Interfaces. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8705-9.
Texto completo da fonteHordeski, Michael F. Personal computer interfaces. Maidenhead: McGraw-Hill, 1995.
Encontre o texto completo da fonteI, Vlaeminke, ed. Man-computer interfaces. Oxford: Blackwell Scientific, 1987.
Encontre o texto completo da fonteNam, Chang S., Anton Nijholt e Fabien Lotte, eds. Brain–Computer Interfaces Handbook. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954.
Texto completo da fonteClerc, Maureen, Laurent Bougrain e Fabien Lotte, eds. Brain-Computer Interfaces 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119144977.
Texto completo da fonteClerc, Maureen, Laurent Bougrain e Fabien Lotte, eds. Brain-Computer Interfaces 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119332428.
Texto completo da fonteCapítulos de livros sobre o assunto "Computer interfaces"
Tan, Desney, e Anton Nijholt. "Brain-Computer Interfaces and Human-Computer Interaction". In Brain-Computer Interfaces, 3–19. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8_1.
Texto completo da fonteMarquez-Chin, Cesar, Naaz Kapadia-Desai e Sukhvinder Kalsi-Ryan. "Brain–Computer Interfaces". In Brain–Computer Interfaces, 51–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01608-0_4.
Texto completo da fonteBrandman, David M., e Leigh R. Hochberg. "Brain Computer Interfaces". In Neurobionics: The Biomedical Engineering of Neural Prostheses, 231–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118816028.ch9.
Texto completo da fonteSchalk, Gerwin, e Jürgen Mellinger. "Brain–Computer Interfaces". In A Practical Guide to Brain–Computer Interfacing with BCI2000, 3–8. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-092-2_1.
Texto completo da fonteSutcliffe, Alistair. "Computer Control Interfaces". In Human-Computer Interface Design, 156–80. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4899-6749-7_9.
Texto completo da fonteHolmes, Nate. "Camera Computer Interfaces". In Handbook of Machine and Computer Vision, 431–503. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527413409.ch8.
Texto completo da fonteCurio, Gabriel. "Brain-Computer Interfaces". In Bildverarbeitung für die Medizin 2012, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28502-8_2.
Texto completo da fonteMillán, José del R. "Brain-Computer Interfaces". In Introduction to Neural Engineering for Motor Rehabilitation, 237–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118628522.ch12.
Texto completo da fonteSibilano, Elena, Vladimiro Suglia, Antonio Brunetti, Domenico Buongiorno, Nicholas Caporusso, Christoph Guger e Vitoantonio Bevilacqua. "Brain–Computer Interfaces". In Neuromethods, 203–40. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3545-2_10.
Texto completo da fonteHe, Bin, Han Yuan, Jianjun Meng e Shangkai Gao. "Brain–Computer Interfaces". In Neural Engineering, 131–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Computer interfaces"
Wolpaw, Jonathan R. "Brain-computer interfaces". In the 2nd ACM SIGHIT symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2110363.2110366.
Texto completo da fonteJantz, Jay, Adam Molnar e Ramses Alcaide. "A brain-computer interface for extended reality interfaces". In SIGGRAPH '17: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3089269.3089290.
Texto completo da fonteRekimoto, Jun. "Multiple-computer user interfaces". In CHI '00 extended abstracts. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/633292.633297.
Texto completo da fonteMolina, Gary Garcia, Tsvetomira Tsoneva e Anton Nijholt. "Emotional brain-computer interfaces". In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII 2009). IEEE, 2009. http://dx.doi.org/10.1109/acii.2009.5349478.
Texto completo da fonteHincks, Samuel, Sarah Bratt, Sujit Poudel, Vir V. Phoha, Robert J. K. Jacob, Daniel C. Dennett e Leanne Hirshfield. "Entropic Brain-computer Interfaces". In 4th International Conference on Physiological Computing Systems. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006383300230034.
Texto completo da fonteBeckhaus, Steffi, e Ernst Kruijff. "Unconventional human computer interfaces". In the conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1103900.1103918.
Texto completo da fonteIgarashi, Takeo. "Sketching interfaces for computer graphics". In ACM SIGGRAPH ASIA 2009 Courses. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665817.1665833.
Texto completo da fonteLotte, Fabien, Junya Fujisawa, Hideaki Touyama, Rika Ito, Michitaka Hirose e Anatole Lécuyer. "Towards ambulatory brain-computer interfaces". In the International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1690388.1690452.
Texto completo da fonteMcCullagh, P. J., M. P. Ware e G. Lightbody. "Brain Computer Interfaces for inclusion". In AH '10: 2010 Augmented Human International Conference. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1785455.1785461.
Texto completo da fonteGrynszpan, Ouriel, Jean-Claude Martin e Jacqueline Nadel. "Human computer interfaces for autism". In CHI '05 extended abstracts. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1056808.1056931.
Texto completo da fonteRelatórios de organizações sobre o assunto "Computer interfaces"
Norcio, A. F., e J. Stanley. Adaptive Human-Computer Interfaces. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1988. http://dx.doi.org/10.21236/ada200930.
Texto completo da fonteTolmie, D. E., W. St. John e D. H. DuBois. Super-speed computer interfaces and networks. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/534509.
Texto completo da fonteTerranova, M. Team-computer interfaces in complex task environments. Office of Scientific and Technical Information (OSTI), setembro de 1990. http://dx.doi.org/10.2172/6427485.
Texto completo da fonteKirchstetter, Thomas. Brain-computer interfaces enabled by novel magnetometers. Office of Scientific and Technical Information (OSTI), dezembro de 2020. http://dx.doi.org/10.2172/1755426.
Texto completo da fonteSchmidt, Nick. Control of Physical Objects Utilizing Brain Computer Interfaces. Ames (Iowa): Iowa State University, janeiro de 2020. http://dx.doi.org/10.31274/cc-20240624-423.
Texto completo da fonteMyers, Brad A. Why are Human-Computer Interfaces Difficult to Design and Implement. Fort Belvoir, VA: Defense Technical Information Center, julho de 1993. http://dx.doi.org/10.21236/ada268843.
Texto completo da fonteEnright, Doug, e Ron Fedkiw. Robust Treatment of Interfaces for Fluid Flows and Computer Graphics. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2003. http://dx.doi.org/10.21236/ada479018.
Texto completo da fonteJyothi, Yadav. Neural implants: A meta analysis on the efficacy and the possibilities of brain-computer interfaces. Ames (Iowa): Iowa State University, maio de 2022. http://dx.doi.org/10.31274/cc-20240624-1048.
Texto completo da fonteFranza, Bernard R. Combining Broadband Connectivity and Immersive Human-to-Computer Interfaces to Improve Medical Simulation Training and Patient Care. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2010. http://dx.doi.org/10.21236/ada543828.
Texto completo da fonteHannas, William, Huey-Meei Chang, Daniel Chou e Brian Fleeger. China's Advanced AI Research: Monitoring China's Paths to "General" Artificial Intelligence. Center for Security and Emerging Technology, julho de 2022. http://dx.doi.org/10.51593/20210064.
Texto completo da fonte