Literatura científica selecionada sobre o tema "Compton Inverse"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Compton Inverse".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Compton Inverse"

1

Suortti, Pekka. "Inverse Compton for Compton". Physica Scripta 91, n.º 4 (7 de março de 2016): 043002. http://dx.doi.org/10.1088/0031-8949/91/4/043002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ghisellini, G., I. M. George, A. C. Fabian e C. Done. "Anisotropic inverse Compton emission". Monthly Notices of the Royal Astronomical Society 248, n.º 1 (janeiro de 1991): 14–19. http://dx.doi.org/10.1093/mnras/248.1.14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Padmanabhan, T. "Inverse Compton scattering – revisited". Journal of Astrophysics and Astronomy 18, n.º 1 (junho de 1997): 87–90. http://dx.doi.org/10.1007/bf02714856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Curatolo, C., L. Lanz e V. Petrillo. "Inverse Compton Cross Section Revisited". Physics Procedia 52 (2014): 46–51. http://dx.doi.org/10.1016/j.phpro.2014.06.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Graves, W. S., W. Brown, F. X. Kaertner e D. E. Moncton. "MIT inverse Compton source concept". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, n.º 1 (setembro de 2009): S103—S105. http://dx.doi.org/10.1016/j.nima.2009.05.042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bornikov, K. A., I. P. Volobuev e Yu V. Popov. "Notes on inverse Compton scattering". Seriya 3: Fizika, Astronomiya, n.º 4_2023 (20 de setembro de 2023): 2340201–1. http://dx.doi.org/10.55959/msu0579-9392.78.2340201.

Texto completo da fonte
Resumo:
The paper considers some kinematic conditions for the inverse Compton scattering of photons by relativistic electrons and the polarizations of colliding particles, which affect the value of the differential cross section of the process. A significant influence of the electron and photon helicity on the value of the cross section was found. In the ultrarelativistic case, a surprising effect of an almost twofold increase in the cross section of scattering in the direction of the initial electron momentum was also discovered, when the initial photon momentum is perpendicular to that of the initial electron.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bornikov, K. A., I. P. Volobuev e Yu V. Popov. "Notes on Inverse Compton Scattering". Moscow University Physics Bulletin 78, n.º 4 (agosto de 2023): 453–59. http://dx.doi.org/10.3103/s0027134923040045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Chen, Xin, Xinze Li, Shangqi Zha e Lingyin Zhang. "Applications of Non-linear Inverse Compton Scattering based on the Laser Plasma Accelerators". Highlights in Science, Engineering and Technology 38 (16 de março de 2023): 437–43. http://dx.doi.org/10.54097/hset.v38i.5856.

Texto completo da fonte
Resumo:
The generation of energetic photons in the context of inverse Compton scattering has attracted a great lot of interest from many contemporary scientific fields. Radiobiology, materials physics, and medicine are some of the current fields where inverse Compton scattering is used. In this study, the applications of nonlinear inverse Compton scattering will be demonstrated and illustrated based on laser plasma interaction. This paper introduces and highlights the current advancement in this area, which is a crucial component of quantum physics, as well as the potential uses in the future depending on additional study. Thorough explanations are demonstrated and talked about the uses of inverse Compton scattering. To highlight our thoughts on present developments and potential future advancements in the field, we have extended and expanded on the theme using simulations and experimental data. These results pave a path to generate and shed light on guiding further state-of-art proposals for High flux X/gamma ray generation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wei Jianmeng, 魏见萌, 夏长权 Xia Changquan, 冯珂 Feng Ke, 张虹 Zhang Hong, 姜海 Jiang Hai, 葛彦杰 Ge Yanjie, 王文涛 Wang Wentao, 冷雨欣 Leng Yuxin e 李儒新 Li Ruxin. "全光逆康普顿散射源". Acta Optica Sinica 44, n.º 4 (2024): 0400004. http://dx.doi.org/10.3788/aos231602.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bulyak, Eugene, e Junji Urakawa. "Spectral properties of Compton inverse radiation: Application of Compton beams". Journal of Physics: Conference Series 517 (30 de maio de 2014): 012001. http://dx.doi.org/10.1088/1742-6596/517/1/012001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Compton Inverse"

1

Cullen, Jason. "Inverse compton scattering in high energy astrophysics". Connect to full text, 2001. http://hdl.handle.net/2123/849.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Sydney, 2002.
Title from title screen (viewed Apr. 23, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Research Centre for Theoretical Astrophysics & Theoretical Physics Group, School of Physics. Degree awarded 2002; thesis submitted 2001. Includes bibliography. Also available in print form.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Cullen, Jason Graham. "Inverse compton scattering in high energy astrophysics". Thesis, The University of Sydney, 2001. http://hdl.handle.net/2123/849.

Texto completo da fonte
Resumo:
This thesis investigates some aspects of the inverse Compton scattering process within various physical contexts in high energy astrophysics. Initially an introduction to the key results of Comptonization theory for the case of scattering in optically thick plasmas is given, using a diffusion approach, since these results are required for the interpreta- tion of Comptonized spectra. Since Comptonization in astrophysical systems is frequently treated using numerical techniques, an introduction to these is then presented. Such linear Monte Carlo photon transport codes are typically applied to scattering in plasmas without temperature and density gradients. Additionally, treating bulk motion can be difficult even for simple cases. It is demonstrated that these problems can be made tractable numerically with the use of algorithms associated with non-linear Monte Carlo codes. Such codes can already treat scattering within arbitrary velocity structures in a plasma, and an extension of the algo- rithm is proposed that enables the easy calculation of photon transport in plasmas with non-constant density as well as non-constant temperature and/or bulk motion. This algorithm and code has been developed to treat scattering in astrophysical situations where bulk motion, temperature gradients and density gradients are simultaneously present in a plasma. Both a semi-analytic approach and the numerical approach are then used to treat Comp- tonization problems of current interest. Firstly, the standard two-phase disk-corona model for the high-energy spectra of Active Galactic Nuclei is modified to include an an outflow or wind which may provide an additional source of disk cooling. Earlier slab disk-corona models predict a spectral index which is consistent with observations only if all the accretion power is dissipated in the corona. For the models investigated here, energy spectral indices that are consistent with observations can be obtained with less accretion power being dissipated in the corona, as a result of an outflow/wind. However, it is required that the wind extract large amounts of power from the disk, and it it yet to be seen if this is a plausible scenario.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Cullen, Jason Graham. "Inverse compton scattering in high energy astrophysics". University of Sydney. Physics, 2001. http://hdl.handle.net/2123/849.

Texto completo da fonte
Resumo:
This thesis investigates some aspects of the inverse Compton scattering process within various physical contexts in high energy astrophysics. Initially an introduction to the key results of Comptonization theory for the case of scattering in optically thick plasmas is given, using a diffusion approach, since these results are required for the interpreta- tion of Comptonized spectra. Since Comptonization in astrophysical systems is frequently treated using numerical techniques, an introduction to these is then presented. Such linear Monte Carlo photon transport codes are typically applied to scattering in plasmas without temperature and density gradients. Additionally, treating bulk motion can be difficult even for simple cases. It is demonstrated that these problems can be made tractable numerically with the use of algorithms associated with non-linear Monte Carlo codes. Such codes can already treat scattering within arbitrary velocity structures in a plasma, and an extension of the algo- rithm is proposed that enables the easy calculation of photon transport in plasmas with non-constant density as well as non-constant temperature and/or bulk motion. This algorithm and code has been developed to treat scattering in astrophysical situations where bulk motion, temperature gradients and density gradients are simultaneously present in a plasma. Both a semi-analytic approach and the numerical approach are then used to treat Comp- tonization problems of current interest. Firstly, the standard two-phase disk-corona model for the high-energy spectra of Active Galactic Nuclei is modified to include an an outflow or wind which may provide an additional source of disk cooling. Earlier slab disk-corona models predict a spectral index which is consistent with observations only if all the accretion power is dissipated in the corona. For the models investigated here, energy spectral indices that are consistent with observations can be obtained with less accretion power being dissipated in the corona, as a result of an outflow/wind. However, it is required that the wind extract large amounts of power from the disk, and it it yet to be seen if this is a plausible scenario.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Resta, Giacomo Rosario. "Three-dimensional simulation of coherent inverse Compton scattering". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92692.

Texto completo da fonte
Resumo:
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 49).
Novel compact X-ray sources using coherent ICS have the potential to positively impact a wide range of sectors by making hard x-ray techniques more accessible. However, the analysis of such novel sources requires improvements to existing simulation routines to incorporate Coulomb forces among particles and effects related to the phase of emitted radiation. This thesis develops a numerical routine for calculating the radiation scattered by electrons counter-propagating with a linearly-polarized, Gaussian laser pulse. The routine takes into account electron-electron repulsion and the constructive and destructive interference between the radiation emitted by each electron, making it suitable for characterizing the properties of inverse Compton scattering (ICS) sources where the electron density varies on the order of the laser wavelength. Finally, an analysis of the emission characteristics for an example ICS source with coherent emission at 10 nm wavelength is included. The source uses a 2 MeV electron bunch and a 1 /pm wavelength laser. The coherent emission demonstrates a significantly narrowed linewidth and greatly increased output power when compared to traditional ICS.
by Giacomo Rosario Resta.
S.B.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

CARDARELLI, Paolo. "Devices and techniques for the characterization of inverse Compton sources". Doctoral thesis, Università degli studi di Ferrara, 2013. http://hdl.handle.net/11392/2388872.

Texto completo da fonte
Resumo:
Innovative intense monochromatic x/ -ray sources are of great interest in the scientific community. A large number of applications in basic and applied physics research, as well as in different science fields, require an intense, monochromatic or quasi-monochromatic, tunable radiation source. Synchrotron radiation is optimal for low energy applications (< 100 keV) but the size and cost of synchrotron facilities prevent a large-scale spread of this kind of source, that is fundamental for applications such as routine clinical diagnostic. Moreover, synchrotron light is not suitable in the case of high energy applications (> 1 MeV), needed primarily for nuclear physics experiments, due to limitations on the maximum energy obtainable for monochromatic beams with synchrotron light. Alternative sources that can overcome such limitations are those based on inverse Compton interaction, which permit to obtain compact and cost-effective sources for low energy applications and can provide monochromatic collimated beam in the high energy range. Inverse Compton is the process in which a photon interacts with a relativistic electron, in this case the electron can transfer a fraction of its energy in the collision, resulting in a backscattered photon with an increased energy. This process can be used to produce hard x/ -rays by the backscattering of low-energy laser photons by a relativistic electron beam. A radiation source based on this interaction is usually called an inverse Compton source, alternatively, it can be called Thomson source when the energies involved allow a classical description of the process, as in the case of Thomson scattering. The work described in this dissertation concerns the devices and techniques developed to perform a characterization of inverse Compton sources. In particular, the work is focused on two major projects: BEATS2 experiment and ELI-NP-GBS proposal of E-Gammas collaboration. BEATS2 is an experiment funded by Istituto Nazionale di Fisica Nucleare (INFN) aimed to study medical applications, specially to mammographic imaging, of the SL-Thomson source of SPARC-LAB at the INFN-LNF that will be commissioned in the first half of 2013. E-Gammas is an international collaboration composed by several Universities and Institutions including: INFN and Universit`a di Roma La Sapienza, in Italy, Universitè de Paris Sud and IN2P3/CNRS, in France, and ASTeC of STFC, in UK. The collaboration is aimed to the preparation of a Technical Design Report for the ELI-NP Gamma Beam System (ELI-NP-GBS) to be commissioned by the end of 2016. This Gamma Beam System will be a high energy inverse Compton source, included in the Extreme Light Infrastructure - Nuclear physics (ELI-NP), an European project dedicated to the development of laser beams and the generation of high intensity gamma beams for frontier research in nuclear physics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ciccarelli, Cristiano. "Processi di scattering in astrofisica". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19940/.

Texto completo da fonte
Resumo:
Con il termine scattering si indica una vasta gamma di processi dovuti all’interazione onda-particella, dove la prima viene deflessa (ossia cambia traiettoria) a causa di un urto con la seconda. Qui saranno analizzati due fenomeni basati su quest’interazione; a seconda dell’energia dell’onda incidente infatti abbiamo: lo scattering Thomson a basse energie, processo in cui l’onda viene esclusivamente deviata, e lo scattering Compton ad alte energie, in cui il fotone, tramite l’urto, trasferisce parte della propria energia alla particella ferma (tipicamente un elettrone). Verr`a studiato anche il caso in cui sia l’elettrone ad essere pi`u energetico del fotone, questo processo `e chiamato Inverse Compton (IC) e tramite questo fenomeno l’onda, urtando, acquisisce energia dalla particella. Nel Capitolo 1 saranno analizzati questi tre scenari e, successivamente, i fenomeni di Synchrothron Self-Compton, Catastrofe Compton e Comptonizzazione, dovuti alla combinazione del processo di IC rispettivamente con l’emissione per Sincrotrone e con lo scattering Compton. Nel secondo capitolo verranno invece illustrate tre applicazioni astrofisiche di questi fenomeni: prima con lo scattering Thomson e il suo ruolo nello studio degli AGN, qualora questi siano nascosti dai loro tori oscuranti, poi con l’Inverse Compton e il suo contributo alla Radiazione Extragalattica di Fondo e infine con una conseguenza fondamentale del fenomeno della Comptonizzazione, l’ effetto Sunyaev Zel’dovich, che permette di identificare ammassi di galassie studiando la Radiazione Cosmica di Fondo.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Fornasiero, Ilaria. "Processi di scattering in astrofisica". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24834/.

Texto completo da fonte
Resumo:
I processi di scattering, anche chiamati processi di diffusione, riguardano le interazioni tra onde elettromagnetiche e particelle libere. Nel primo capitolo saranno analizzati i due processi fondamentali, quali la diffusione Thomson e la diffusione Compton. Nel primo caso si affrontano interazioni tra onde elettromagnetiche ed elettroni a riposo determinate dalle basse energie dell'onda incidente rispetto all'elettrone e in cui non avvengono trasferimenti energetici, mentre nel secondo caso si considera l'interazione, tra un fotone e un elettrone, come un urto elastico, dove quindi saranno conservate l'energia totale e la quantità di moto. Successivamente verranno descritti i processi di Inverse Compton, cioè l'interazione energetica tra un elettrone con energia cinetica sufficientemente alta e un fotone, e la Comptonizzazione, dove gli effetti della diffusione Compton e Inverse Compton si trovano in competizione. Nel secondo capitolo verranno descritte due importanti applicazioni astrofisiche dei processi di diffusione, cioè l'effetto Sunyaev-Zeldovich, in cui i fotoni di bassa energia della radiazione cosmica di fondo interagiscono con il gas caldo degli ammassi di galassie, e la radiazione emessa a causa dei fenomeni di accrescimento negli AGN.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jochmann, Axel. "Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering". Forschungszentrum Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-154801.

Texto completo da fonte
Resumo:
Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pumpprobe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results will serve as a milestone and starting point for the scaling of the Xray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jochmann, Axel. "Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering". Forschungszentrum Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231.

Texto completo da fonte
Resumo:
Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pumpprobe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results will serve as a milestone and starting point for the scaling of the Xray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need
Ultrakurze, quasi-monochromatische harte Röntgenpulse erweitern das Verständnis für die dynamischen Prozesse und funktionalen Zusammenhänge in Materie, beispielsweise die Dynamik in atomaren Strukturen bei ultraschnellen Phasenübergängen, Gitterbewegungen und (bio)chemischen Reaktionen. Compton-Rückstreuung erlaubt die Erzeugung der für ein pump-probe-Experiment benötigten intensiven Röntgenpulse und ermöglicht gleichzeitig einen Einblick in die komplexen kinematischen Prozesse während der Wechselwirkung von Elektronen und Photonen. Ziel dieser Arbeit ist, ein quantitatives Verständnis der verschiedenen experimentellen Einflüsse auf die emittierte Röntgenstrahlung bei der Streuung von Laserphotonen an relativistischen Elektronen zu entwickeln. Die Experimente wurden am ELBE - Zentrum für Hochleistungs-Strahlenquellen des Helmholtz-Zentrums Dresden - Rossendorf durchgeführt. Der verwendete supraleitende Linearbschleuniger ELBE und der auf Titan-Saphir basierende Hochleistungslaser DRACO garantieren ein Höchstmaß an Kontrolle und Stabilität der experimentellen Bedingungen. Zur Messung der emittierten Röntgenstrahlung wurde ein Siliziumdetektor mit 1024x256 Pixeln (Pixelgröße 26μm × 26μm) verwendet, welcher für eine bisher nicht erreichte spektrale und räumliche Auflösung sorgt. Die so erfolgte vollständige Charakterisierung der Energie-Winkel-Beziehung erlaubt Rückschlüsse auf Parametereinflüsse und Korrelationen von Elektronen- und Laserstrahl. Eine umfassende statistische Analyse, bei der ab-initio 3D Simulationen mit den experimentellen Daten verglichen und ausgewertet wurden, ermöglichte u.a. die Bestimmung der Elektronenstrahldivergenz mit einer Genauigkeit von 1.5% und erlaubt Vorhersagen zur zu erwartenden Strahlung der zukünftigen brillianten Röntgenquelle PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) und potentiellen lasergetriebenen Gammastrahlungsquellen. Die Ergebnisse dienen als Fixpunkt für die Skalierung des erwarteten Photonenflusses der Röntgenquelle für die verfügbaren Ausgangsgrößen am Helmholtz-Zentrum Dresden - Rossendorf. Das Wissen um die räumliche und spektrale Verteilung der Röntgenstrahlung ist entscheidend für die Planung zukünftiger Experimente sowie zur Anpassung der Quelle an experimentelle Bedürfnisse
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Pires, Abel. "Optimisation de la source X impulsionnelle par diffusion Compton inverse d'un accélérateur linéaire d'électrons". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP156.

Texto completo da fonte
Resumo:
Ma thèse porte sur l’optimisation d’une source de rayons X par effet Compton inverse, ce qui consiste à faire interagir un paquet d’électrons provenant d’un accélérateur avec un faisceau laser. J’ai travaillé sur l’optimisation du passage du compresseur magnétique (permettant de réduire la durée des paquets d’électrons). J’ai étudié cet élément avec 3 codes de simulation, et expérimentalement, pour déterminer les effets physiques responsables de l’évolution de la qualité du paquet (émittance), en fonction du nombre d’électrons.Pour le laser, mes travaux permettent d’atteindre des énergies laser plus élevées au niveau du point d’interaction. J’ai mis en place un système CPA (Chirped Pulse Amplification), ce qui consiste à étirer la durée des impulsions laser avant de les amplifier pour éviter le risque de casse. J’ai aussi travaillé sur un dispositif, le SMILE 2, permettant de superposer 8 impulsions laser au point d’interaction. La nouvelle version permet d’automatiser l’alignement
My thesis focuses on optimizing an X-ray source through inverse Compton scattering, which consists in the interaction between an electron bunch from an accelerator and a laser beam.I worked on optimizing the transport through the magnetic compressor, which reduces the duration of electron bunches. I analyzed this component using three simulation codes, as well as experimentally, to identify the physical effects that influence the bunch quality (emittance) as a function of the number of electrons in the bunch.For the laser, my work enables us to achieve higher laser energies at the interaction point. I implemented a Chirped Pulse Amplification (CPA) system, which stretches the laser pulse duration before amplification to prevent damage. I also worked on a device, SMILE 2 that enables the superposition of 8 laser pulses at the interaction point. The new version allows for automated alignment
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Compton Inverse"

1

Günther, Benedikt Sebastian. Storage Ring-Based Inverse Compton X-ray Sources. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17742-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

United States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: A thesis in astronomy. [University Park, Pa.]: Pennsylvania State University, The Graduate School, Dept. of Astronomy, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

United States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: Final technical report : November 1, 1983 - October 30, 1984. University Park, PA: Pennsylvania State University, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

United States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: Final technical report : November 1, 1983 - October 30, 1984. University Park, PA: Pennsylvania State University, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

United States. National Aeronautics and Space Administration., ed. Search for inverse Compton X-rays from the Lobes of Fornax A X-rays from radio galaxies straddling the Fanaroff-Riley transitions: Final technical report for NASA grant NAG 5-1959. [Washington, DC: National Aeronautics and Space Administration, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

United States. National Aeronautics and Space Administration., ed. Search for inverse Compton X-rays from the Lobes of Fornax A X-rays from radio galaxies straddling the Fanaroff-Riley transitions: Final technical report for NASA grant NAG 5-1959. [Washington, DC: National Aeronautics and Space Administration, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

X-ray inverse Compton emission from the radio halo of M87: A thesis in astronomy. [University Park, Pa.]: Pennsylvania State University, The Graduate School, Dept. of Astronomy, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Günther, Benedikt Sebastian. Storage Ring-Based Inverse Compton X-Ray Sources: Cavity Design, Beamline Development and X-Ray Applications. Springer International Publishing AG, 2022.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Storage Ring-Based Inverse Compton X-Ray Sources: Cavity Design, Beamline Development and X-Ray Applications. Springer International Publishing AG, 2024.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ganarin, Manuel. L'interpretazione autentica nelle attuali dinamiche evolutive del diritto canonico. Bononia University Press, 2021. http://dx.doi.org/10.30682/sg290.

Texto completo da fonte
Resumo:
Questo contributo mira a tracciare un quadro di sintesi sull’istituto dell’interpretazione autentica delle leggi universali della Chiesa. La teoria e la prassi dell’attività di interpretazione hanno costituito da sempre un tema rilevante nell’evoluzione dell’ordinamento canonico: ancor più dopo la scelta di dar vita ad una codificazione universale. Come per il Codex Iuris Canonici del 1917 Benedetto XV aveva istituito una Commissione ad hoc, così per quello attualmente in vigore tale compito è stato assegnato prima alla Pontificia Commissione per l’Interpretazione Autentica del Codice di Diritto Canonico e poi al Pontificio Consiglio per l’Interpretazione dei Testi Legislativi (ora Pontificio Consiglio per i Testi Legislativi). Il presente volume, mentre analizza in maniera sistematica tutto lo spettro nel quale si può articolare e tentare di catalogare lo sforzo ermeneutico, cerca al contempo di indagarne motivazioni e dimensioni entro le marcate specificità che caratterizzano lo ius Ecclesiae. La coerenza intrinseca dell’opera interpretativa va individuata non nella ricerca metodologica di una perfezione formale (come non di rado si è registrato invece nella dommatica giuridica secolare di stampo giuspositivistico), ma nell’esigenza di far emergere e trionfare le esigenze sostanziali di giustizia, ripristinando così in tutta la sua effettività, risolvendone dubbi e contraddizioni, la rationabilitas della legge. La domanda ultima investe il possibile anacronismo dell’istituto dell’interpretazione autentica, stante, da una parte, il progressivo affermarsi di una deregulation che si diffonde in tutti gli ordinamenti e, dall’altra, un orientamento apparentemente meno confidente nel ruolo e nella capacità dello strumento giuridico quale mezzo di composizione dei conflitti che sembra in particolare segnare le attuali dinamiche evolutive del diritto canonico. Questo studio non risolve (né potrebbe) il problema, consapevole di come esso vada ben al di là del perimetro qui indagato, ma non rinuncia a farlo trasparire in filigrana dall’illustrazione compiuta ed esigente di un istituto giuridico, quale l’interpretazione autentica, ricco di implicazioni e sviluppi nelle diverse stagioni della Chiesa e, conseguentemente, della scienza canonistica.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Compton Inverse"

1

Harding, Alice K. "Inverse-Compton Gamma Rays From Plerions". In TeV Gamma-Ray Astrophysics, 257–68. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0171-1_19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Günther, Benedikt Sebastian. "Overview on Inverse Compton X-ray Sources". In Springer Theses, 117–47. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17742-2_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Tsakiris, D., J. P. Leahy, R. G. Strom e C. R. Barber. "Inverse Compton X-Rays from Giant Radio Galaxies". In Extragalactic Radio Sources, 256–58. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_93.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Howard, W. M., e E. P. Liang. "Inverse Compton Model of Gamma Ray Burst Spectra". In The Origin and Evolution of Neutron Stars, 547. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3913-4_104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jager, Ocker C. "Synchrotron and Inverse Compton Radiation in Supernova Remnants". In Currents in High-Energy Astrophysics, 225–34. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0253-7_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Qiao, G. J., R. X. Xu, J. F. Liu, J. L. Han e B. Zhang. "On the Inverse Compton Scattering Model of Radio Pulsars". In Stellar Astrophysics, 379–84. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0878-5_44.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Xia, X. Y., Z. G. Deng, G. J. Qiao, X. J. Wu e H. Chen. "The Effects of Inverse Compton Scattering on the Pulsars’ Radiation". In The Origin and Evolution of Neutron Stars, 59. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3913-4_17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Günther, Benedikt Sebastian. "Inverse Compton X-ray Sources—A Revolution or a Complement?" In Springer Theses, 1–5. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17742-2_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Qiao, G. J. "Inverse Compton Scattering (ICS) Plays an Important Role in Pulsar Emission". In High Energy Astrophysics, 88–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73560-8_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Qiao, G. J., X. J. Wu, H. Chen e X. Y. Xia. "An Inverse Compton Scattering Model for the Spectra of X-Ray Pulsars". In The Origin and Evolution of Neutron Stars, 248. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3913-4_56.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Compton Inverse"

1

Tilton, Sean E., Elena L. Ros, Kevin E. Schmidt, Sudeep Banerjee, Arvinder Sandhu, Arya Fallahi, Robert A. Kaindl, Mark R. Holl, William S. Graves e Samuel W. Teitelbaum. "Laser-Based Undulator Design for Soft X-ray Free Electron Laser". In CLEO: Fundamental Science, FW3C.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3c.1.

Texto completo da fonte
Resumo:
We present an optical undulator design of a soft X-ray compact free electron laser with a laser-based undulator feasible with commercially available laser systems. We simulate the Inverse Compton Scattering process and investigate engineering constraints.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Balanov, Amnon, Ron Ruimy e Ido Kaminer. "Toward high-gain laser-driven electron undulation". In CLEO: Fundamental Science, FW3C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3c.2.

Texto completo da fonte
Resumo:
We find an unexplored regime of inverse Compton scattering, achieving high-gain undulation as in FELs. We show the potential for soft-X-ray and extreme ultraviolet radiation sources based on next-generation electron sources and state-of-the-art laser sources.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sun, J., H. Ding, Z. Chi e C. Tang. "Investigation of the resolution requirement for propagation-based phase contrast imaging using inverse Compton scattering sources". In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656699.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sakai, Yusuke, Oliver Williams, Atsushi Fukasawa, James Rosenzweig, Mikhail Polyanskiy, Marcus Babzien, Karl Kusche, Mikhail Fedurin, Igor Pogorelsky e Mark Palmer. "Status of Nonlinear Inverse Compton Scattering Studies at the BNL ATF: Properties of 3rd-Order Harmonics by Circularly Polarized CO2laser". In 2022 IEEE Advanced Accelerator Concepts Workshop (AAC), 1–3. IEEE, 2022. https://doi.org/10.1109/aac55212.2022.10822926.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rosa, A., A. Richelli e L. Colalongo. "EMI Immunity of the Nauta Inverter-Based Amplifier". In 2024 14th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 15–18. IEEE, 2024. http://dx.doi.org/10.1109/emccompo61192.2024.10742042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Liu, Chen, Frede Blaabjerg e Pooya Davari. "DM EMI Noise Prediction for BCM based Single-Phase Grid-Connected Inverter". In 2024 14th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/emccompo61192.2024.10742037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Schulz, Matthias, e Michael Kopf. "Passive DC-input and DC-input/AC-output EMI filter for DC-AC inverter". In 2024 14th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/emccompo61192.2024.10742067.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Yan, Wenchao, Grigory Golovin, Daniel Haden, Colton Fruhling, Ping Zhang, Jun Zhang, Baozhen Zhao et al. "Highly Nonlinear Inverse Compton Scattering". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm3b.3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Crider, A., E. P. Liang, I. A. Smith, D. Lin e M. Kusunose. "A thermal-nonthermal inverse Compton model for Cyg X-1". In The fourth compton symposium. AIP, 1997. http://dx.doi.org/10.1063/1.54154.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Castilla, A., M. Napsuciale, J. M. López Romero, Alejandro Ayala, Guillermo Contreras, Ildefonso Leon e Pedro Podesta. "Hard photon production by inverse Compton scattering". In XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3622731.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Compton Inverse"

1

Weitz, R. L. Inverse Compton conversion. Final report. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/10183321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Deitrick, Kirsten Elizabeth. Inverse compton light source: a compact design proposal. Office of Scientific and Technical Information (OSTI), maio de 2017. http://dx.doi.org/10.2172/1409020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Blum, E. B. A storage ring based inverse Compton scattering angiography source? Office of Scientific and Technical Information (OSTI), setembro de 1993. http://dx.doi.org/10.2172/10105574.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ng, K. Y,. The equivalence of inverse Compton scattering and the undulator concept. Office of Scientific and Technical Information (OSTI), agosto de 2009. http://dx.doi.org/10.2172/966795.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Moskalenko, Igor V., Troy A. Porter e Seth W. Digel. Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics. Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/888780.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Porter, Troy A., Igor V. Moskalenko e Andrew W. Strong. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field. Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/888781.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Baltz, E. Diffuse Inverse Compton and Synchrotron Emission from Dark Matter Annihilations in Galactic Satellites. Office of Scientific and Technical Information (OSTI), abril de 2004. http://dx.doi.org/10.2172/826862.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hollmann, Eric. A laser inverse compton scattering diagnostic to study runaway electron dynamics during tokamak disruptions. Office of Scientific and Technical Information (OSTI), novembro de 2021. http://dx.doi.org/10.2172/1829731.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Evans, Todd. A LASER INVERSE COMPTON SCATTERING DIAGNOSTIC TO STUDY RUNAWAY ELECTRON DYNAMICS DURING TOKAMAK DISRUPTIONS. Office of Scientific and Technical Information (OSTI), dezembro de 2021. http://dx.doi.org/10.2172/1837231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Malyzhenkov, Alexander. PHASE-SPACE MANIPULATIONS OF ELECTRON BEAMS FOR X-RAY FREE-ELECTRON LASERS AND INVERSE COMPTON SCATTERING SOURCES. Office of Scientific and Technical Information (OSTI), dezembro de 2018. http://dx.doi.org/10.2172/1489921.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia