Artigos de revistas sobre o tema "Compression flows"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Compression flows".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ananin, S. I. "Structure of hydrogen compression plasma flows in a magnetoplasma compressor". Journal of Applied Mechanics and Technical Physics 32, n.º 4 (1992): 465–71. http://dx.doi.org/10.1007/bf00851542.
Texto completo da fonteChen, Hao, Hui-Jun Tan, Qi-Fan Zhang e Yue Zhang. "Buzz Flows in an External-Compression Inlet with Partially Isentropic Compression". AIAA Journal 55, n.º 12 (dezembro de 2017): 4286–95. http://dx.doi.org/10.2514/1.j056066.
Texto completo da fonteHo, Yung-Han, Chih-Chun Chan, Wen-Hsiao Peng, Hsueh-Ming Hang e Marek Domanski. "ANFIC: Image Compression Using Augmented Normalizing Flows". IEEE Open Journal of Circuits and Systems 2 (2021): 613–26. http://dx.doi.org/10.1109/ojcas.2021.3123201.
Texto completo da fonteRudy, David H., James L. Thomas, Ajay Kumar, Peter A. Gnoffo e Sukumar R. Chakravarthy. "Computation of laminar hypersonic compression-corner flows". AIAA Journal 29, n.º 7 (julho de 1991): 1108–13. http://dx.doi.org/10.2514/3.10710.
Texto completo da fonteAstashynski, V. M., E. A. Kostyukevich, A. M. Kuzmitski, A. A. Mishchuk e P. N. Shoronov. "Interaction between oppositely directed compression plasma flows". Journal of Applied Spectroscopy 79, n.º 4 (setembro de 2012): 610–15. http://dx.doi.org/10.1007/s10812-012-9647-6.
Texto completo da fonteTang, Chuanbo, Xihua Sheng, Zhuoyuan Li, Haotian Zhang, Li Li e Dong Liu. "Offline and Online Optical Flow Enhancement for Deep Video Compression". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 6 (24 de março de 2024): 5118–26. http://dx.doi.org/10.1609/aaai.v38i6.28317.
Texto completo da fonteKang, Hyun-Su, Sung-Yeon Kim e Youn-Jea Kim. "Wet Compression Study for an Aero-Thermodynamic Performance Analysis of a Centrifugal Compressor at Design and Off-Design Points". Processes 10, n.º 5 (9 de maio de 2022): 936. http://dx.doi.org/10.3390/pr10050936.
Texto completo da fonteNeuschwander, T. B., B. R. Macias, A. R. Hargens e Q. Zhang. "Mild External Compression of the Leg Increases Skin and Muscle Microvascular Blood Flow and Muscle Oxygenation during Simulated Venous Hypertension". ISRN Vascular Medicine 2012 (10 de dezembro de 2012): 1–6. http://dx.doi.org/10.5402/2012/930913.
Texto completo da fonteLea, C. J., e A. P. Watkins. "Differential stress modelling of turbulent flows in model reciprocating engines". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 211, n.º 1 (1 de janeiro de 1997): 59–77. http://dx.doi.org/10.1243/0954407971526227.
Texto completo da fonteGenbach, A. A., e D. Y. Bondartsev. "An Analysis of Heat Exchange Crisis in the Capillary Porous System for Cooling Parts of Heat and Power Units". Proceedings of Higher Educational Institutions. Маchine Building, n.º 12 (717) (dezembro de 2019): 21–35. http://dx.doi.org/10.18698/0536-1044-2019-12-21-35.
Texto completo da fontePark, S. O., Y. M. Chung e H. J. Sung. "Numerical study of unsteady supersonic compression ramp flows". AIAA Journal 32, n.º 1 (janeiro de 1994): 216–18. http://dx.doi.org/10.2514/3.11973.
Texto completo da fonteAleman, J. V. "Bulk and surface compression flows of polymer melts". European Polymer Journal 27, n.º 3 (janeiro de 1991): 221–26. http://dx.doi.org/10.1016/0014-3057(91)90096-7.
Texto completo da fonteGong, Chengyue, Xiaocong Du, Bhargav Bhushanam, Lemeng Wu, Xingchao Liu, Dhruv Choudhary, Arun Kejariwal e Qiang Liu. "Layer Compression of Deep Networks with Straight Flows". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de março de 2024): 12181–89. http://dx.doi.org/10.1609/aaai.v38i11.29107.
Texto completo da fonteDuggal, C., M. H. Weil, R. J. Gazmuri, W. Tang, S. Sun, F. O'Connell e M. Ali. "Regional blood flow during closed-chest cardiac resuscitation in rats". Journal of Applied Physiology 74, n.º 1 (1 de janeiro de 1993): 147–52. http://dx.doi.org/10.1152/jappl.1993.74.1.147.
Texto completo da fonteLin, Feng, Meilin Li e Jingyi Chen. "Long-to-Short Length-Scale Transition: A Stall Inception Phenomenon in an Axial Compressor With Inlet Distortion". Journal of Turbomachinery 128, n.º 1 (1 de fevereiro de 2005): 130–40. http://dx.doi.org/10.1115/1.2098808.
Texto completo da fonteLee, Sungyeop, e Junghyo Jo. "Information Flows of Diverse Autoencoders". Entropy 23, n.º 7 (5 de julho de 2021): 862. http://dx.doi.org/10.3390/e23070862.
Texto completo da fonteITOH, Hajime. "Visualization of Velocity Fields around Hypersonic Compression Corner Flows". Journal of the Visualization Society of Japan 24, Supplement2 (2004): 83–84. http://dx.doi.org/10.3154/jvs.24.supplement2_83.
Texto completo da fonteShymanski, V. I., V. V. Shevelyova, V. M. Astashynski e A. M. Kuzmitski. "Oxidation of Zirconium Alloy Processed with Compression Plasma Flows". Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 15, S1 (dezembro de 2021): S193—S200. http://dx.doi.org/10.1134/s1027451022020379.
Texto completo da fonteSajben, Miklos. "Propagation of weak compression waves in nonuniform channel flows". Journal of Propulsion and Power 5, n.º 2 (março de 1989): 154–57. http://dx.doi.org/10.2514/3.23130.
Texto completo da fonteQu, Miao, Fanhang Kong, Sha Yan, V. V. Uglov, Jianming Xue e Yugang Wang. "Damages on pure tungsten irradiated by compression plasma flows". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 444 (abril de 2019): 33–37. http://dx.doi.org/10.1016/j.nimb.2018.12.050.
Texto completo da fonteUglov, V. V., N. T. Kvasov, R. S. Kudaktsin, Yu A. Petukhou, V. M. Astashinskii e A. M. Kuzmitski. "Photovoltaic Effect in Silicon Treated by Compression Plasma Flows". Energy Procedia 44 (2014): 10–15. http://dx.doi.org/10.1016/j.egypro.2013.12.003.
Texto completo da fonteBaibekova, F. N., V. V. Podoltsev, N. M. Bespalova e L. A. Sologubova. "Overview of the ways to reduce telemetric information redundancy". Radio industry (Russia) 29, n.º 2 (30 de maio de 2019): 8–16. http://dx.doi.org/10.21778/2413-9599-2019-29-2-8-16.
Texto completo da fonteAji Suryadi, Yanuar e Gunawan. "Compressor Piping Design Effect on Vibration Data". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88, n.º 1 (11 de outubro de 2021): 94–108. http://dx.doi.org/10.37934/arfmts.88.1.94108.
Texto completo da fonteWilcox, David C. "Supersonic compression-corner applications of a multiscale model forturbulent flows". AIAA Journal 28, n.º 7 (julho de 1990): 1194–98. http://dx.doi.org/10.2514/3.25191.
Texto completo da fonteHu, Yan-Chao, Wen-Feng Zhou, Gang Wang, Yan-Guang Yang e Zhi-Gong Tang. "Bistable states and separation hysteresis in curved compression ramp flows". Physics of Fluids 32, n.º 11 (1 de novembro de 2020): 113601. http://dx.doi.org/10.1063/5.0029150.
Texto completo da fonteCherenda, N. N., A. P. Laskovnev, A. V. Basalai, V. V. Uglov, V. M. Astashynski e A. M. Kuzmitski. "Erosion of materials under the effect of compression plasma flows". Inorganic Materials: Applied Research 6, n.º 2 (março de 2015): 114–20. http://dx.doi.org/10.1134/s2075113315020070.
Texto completo da fonteCherenda, N. N., A. A. Smilgin, V. V. Uglov, V. M. Astashynski, A. M. Kuzmitski e G. E. Remnev. "Cleaning of steel surface from scale by compression plasma flows". Surface and Coatings Technology 255 (setembro de 2014): 79–83. http://dx.doi.org/10.1016/j.surfcoat.2014.01.002.
Texto completo da fontePASHA, Amjad A., e Khalid A. JUHANY. "Numerical simulation of compression corner flows at Mach number 9". Chinese Journal of Aeronautics 33, n.º 6 (junho de 2020): 1611–24. http://dx.doi.org/10.1016/j.cja.2020.01.005.
Texto completo da fonteLeyvi, A. Ya, e A. P. Yalovets. "Mechanisms of surface formation at treatment with compression plasma flows". Journal of Physics: Conference Series 1115 (novembro de 2018): 032018. http://dx.doi.org/10.1088/1742-6596/1115/3/032018.
Texto completo da fonteZhang, Shuo, Dongdong Zhong, Hao Wang, Xingshuang Wu e Ning Ge. "Application of a Novel High-Order WENO Scheme in LES Simulations". Applied Sciences 14, n.º 17 (4 de setembro de 2024): 7875. http://dx.doi.org/10.3390/app14177875.
Texto completo da fonteRyshchenko, I. M., S. М. Bykanov, K. O. Gorbunov, A. M. Myronov e M. V. Ilchenko. "COMPLEX THERMAL INTEGRATION OF THE RECTIFICATION PROCESS OF THE BENZENE-TOLUENE MIXTURE". Integrated Technologies and Energy Saving, n.º 2 (5 de julho de 2024): 14–22. http://dx.doi.org/10.20998/2078-5364.2024.2.02.
Texto completo da fonteChen, Guo-Qing, Hongyuan Li, Pengyu Lv e Huiling Duan. "An improved multiphase lattice Boltzmann flux solver with phase interface compression for incompressible multiphase flows". Physics of Fluids 35, n.º 1 (janeiro de 2023): 013310. http://dx.doi.org/10.1063/5.0131506.
Texto completo da fonteHammer, J., e C. J. Newth. "Effect of lung volume on forced expiratory flows during rapid thoracoabdominal compression in infants". Journal of Applied Physiology 78, n.º 5 (1 de maio de 1995): 1993–97. http://dx.doi.org/10.1152/jappl.1995.78.5.1993.
Texto completo da fonteDang, T. Q. "A Fully Three-Dimensional Inverse Method for Turbomachinery Blading in Transonic Flows". Journal of Turbomachinery 115, n.º 2 (1 de abril de 1993): 354–61. http://dx.doi.org/10.1115/1.2929241.
Texto completo da fonteBusarov, S. S., R. E. Kobylskiy e N. G. Sinitsin. "Theoretical Assessment of Possible Reduction in Mass Leaks of Working Medium from a Reciprocating Compressor Chamber". Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, n.º 2 (141) (junho de 2022): 101–11. http://dx.doi.org/10.18698/0236-3941-2022-2-101-111.
Texto completo da fonteShimanski, V. I., A. Evdokimovs, V. V. Uglov, N. N. Cherenda, V. M. Astashinski, A. M. Kuzmitsky, N. V. Bibik e E. A. Petrikova. "Modification of the structure of the hypereutectic silumin alloy Al-44Si under the action of compression plasma flows". Physics and Chemistry of Materials Treatment 1 (2021): 40–50. http://dx.doi.org/10.30791/0015-3214-2021-1-40-50.
Texto completo da fonteKochanenko, Viktor, e Maria Aleksandrova. "COUPLING OF TWO UNIFORM FLOWS". Construction and Architecture 8, n.º 4 (15 de outubro de 2020): 83–86. http://dx.doi.org/10.29039/2308-0191-2020-8-4-83-86.
Texto completo da fonteCunningham, R. G. "Liquid Jet Pumps for Two-Phase Flows". Journal of Fluids Engineering 117, n.º 2 (1 de junho de 1995): 309–16. http://dx.doi.org/10.1115/1.2817147.
Texto completo da fonteGenbach, A. A., e D. Yu Bondartsev. "Science-Based Procedure for Designing Tubular Porous Cooling Systems for Thermal Power Plant Equipment Components". Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, n.º 3 (126) (junho de 2019): 89–106. http://dx.doi.org/10.18698/0236-3941-2019-3-89-106.
Texto completo da fonteShymanski, V. I., V. V. Sheveleva, V. V. Uglov, V. M. Astashynski e A. M. Kuzmitski. "Oxidation of zirconium alloyed with chromium atoms by means of compression plasma flows impact". Physics and Chemistry of Materials Treatment 3 (2023): 18–32. http://dx.doi.org/10.30791/0015-3214-2023-3-18-32.
Texto completo da fonteLe Souef, P. N., D. M. Hughes e L. I. Landau. "Effect of compression pressure on forced expiratory flow in infants". Journal of Applied Physiology 61, n.º 5 (1 de novembro de 1986): 1639–46. http://dx.doi.org/10.1152/jappl.1986.61.5.1639.
Texto completo da fonteChen, Jiann Lin, Chieh Ju Tsai e Hsiang-Chen Hsu. "Simulations of unsteady flows with adsorption equilibrium in dynamic axial compression column". Advances in Mechanical Engineering 12, n.º 6 (junho de 2020): 168781402093709. http://dx.doi.org/10.1177/1687814020937092.
Texto completo da fonteTynnikov, Yu G. "To the Use of Low Temperature Working Fluids and Supercritical Fluids to Reduce the Carbonic Traces in the Production of Urea and in the Pyrolysis of Hydrocarbons". Oil and Gas Technologies 139, n.º 2 (2022): 24–32. http://dx.doi.org/10.32935/1815-2600-2022-139-2-24-32.
Texto completo da fonteValiakhmetov, R. I., E. R. Bashirova, A. I. Galyautdinov, R. D. Rakhmangulov, I. V. Kostitsyna, A. O. Khudyakov e I. M. Khusnullin. "ROOT ANALYSIS OF LOSS STRUCTURAL INTEGRITY FOR OIL COOLING RADIATORS IN COMPRESSOR STATIONS PUMPING ASSOCIATED PETROLEUM GAS CONTAINING WET H2S". Problems of Gathering Treatment and Transportation of Oil and Oil Products, n.º 5 (8 de novembro de 2024): 54–66. http://dx.doi.org/10.17122/ntj-oil-2024-5-54-66.
Texto completo da fonteAnanin, Siarhei I., Valiantsin M. Astashynski e S. P. Zhvavy. "DYNAMICS OF THERMAL ACTION OF COMPRESSION PLASMA FLOWS ON GERMANIUM SURFACE". High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 17, n.º 4 (2013): 257–64. http://dx.doi.org/10.1615/hightempmatproc.v17.i4.70.
Texto completo da fonteKumar, Naresh, e Manoj T. Nair. "Suitability of Density-Corrected Spalart–Allmaras Model for Compression Corner Flows". Journal of Thermophysics and Heat Transfer 29, n.º 2 (abril de 2015): 423–28. http://dx.doi.org/10.2514/1.t3864.
Texto completo da fonteTang, Ming-Zhi, Gang Wang, Zhu-Xuan Xie, Wen-Feng Zhou, Yan-Chao Hu e Yan-Guang Yang. "Aerothermodynamic characteristics of hypersonic curved compression ramp flows with bistable states". Physics of Fluids 33, n.º 12 (dezembro de 2021): 126106. http://dx.doi.org/10.1063/5.0069666.
Texto completo da fonteItoh, Hajime, e Mutsuo Kotake. "Study on Hypersonic Compression Corner Flows Using Glow Discharge-Tracer Technique". JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 54, n.º 631 (2006): 337–44. http://dx.doi.org/10.2322/jjsass.54.337.
Texto completo da fonteHarden, J. L., e M. E. Cates. "Extension and Compression of Grafted Polymer Layers in Strong Normal Flows". Journal de Physique II 5, n.º 7 (julho de 1995): 1093–103. http://dx.doi.org/10.1051/jp2:1995226.
Texto completo da fonteSimeonides, G., W. Haase e M. Manna. "Experimental, analytical, and computational methods applied to hypersonic compression ramp flows". AIAA Journal 32, n.º 2 (fevereiro de 1994): 301–10. http://dx.doi.org/10.2514/3.11985.
Texto completo da fonte