Literatura científica selecionada sobre o tema "Composite materials Al"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Composite materials Al".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Composite materials Al"
Khomenko, E. V., N. I. Grechanyuk e V. Z. Zatovsky. "Modern composite materials for switching and welding equipment. information 1. powdered composite materials". Paton Welding Journal 2015, n.º 10 (28 de outubro de 2015): 36–42. http://dx.doi.org/10.15407/tpwj2015.10.06.
Texto completo da fonteÖztaş, Saniye Karaman. "Fiber Reinforced Composite Materials in Architecture". Applied Mechanics and Materials 789-790 (setembro de 2015): 1171–75. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.1171.
Texto completo da fonteLagerlof, K. P. D. "Transmission electron microscopy of composite materials". Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 1012–15. http://dx.doi.org/10.1017/s0424820100107125.
Texto completo da fonteKala, Shiva Kumar, e Chennakesava Reddy Alavala. "Enhancement of Mechanical and Wear Behavior of ABS/Teflon Composites". Trends in Sciences 19, n.º 9 (8 de abril de 2022): 3670. http://dx.doi.org/10.48048/tis.2022.3670.
Texto completo da fonteKhosravani, Mohammad Reza. "Composite Materials Manufacturing Processes". Applied Mechanics and Materials 110-116 (outubro de 2011): 1361–67. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.1361.
Texto completo da fonteIbraimov, T., e Y. Tashpolotov. "Technology for Producing Composite Materials Based on Multi-component Man-generic Raw Materials". Bulletin of Science and Practice 6, n.º 12 (15 de dezembro de 2020): 274–80. http://dx.doi.org/10.33619/2414-2948/61/29.
Texto completo da fonteChen, Jieng-Chiang, e Bo-Yan Huang. "Flame-retardant corrugated paper/epoxy composite materials". Modern Physics Letters B 33, n.º 14n15 (28 de maio de 2019): 1940004. http://dx.doi.org/10.1142/s0217984919400049.
Texto completo da fonteYamamoto, Tetsuya, Yuya Takahashi e Naoya Toyoda. "Dispersion of Nano-materials in Polymer Composite Materials". MATEC Web of Conferences 333 (2021): 11003. http://dx.doi.org/10.1051/matecconf/202133311003.
Texto completo da fonteYamamoto, Tetsuya, Yuya Takahashi e Naoya Toyoda. "Dispersion of Nano-materials in Polymer Composite Materials". MATEC Web of Conferences 333 (2021): 11003. http://dx.doi.org/10.1051/matecconf/202133311003.
Texto completo da fonteKalizhanova, Aliya, Ainur Kozbakova, Bakhyt Eralieva, Murat Kunelbayev e Zhalau Aitkulov. "RESEARCH AND ANALYSIS OF THE PROPERTIES OF COMPOSITE MATERIALS. DEFINITION AND CLASSIFICATION OF COMPOSITE MATERIALS". Вестник КазАТК 128, n.º 5 (19 de outubro de 2023): 131–40. http://dx.doi.org/10.52167/1609-1817-2023-128-5-131-140.
Texto completo da fonteTeses / dissertações sobre o assunto "Composite materials Al"
Freitas, Ricardo Luiz Barros de [UNESP]. "Fabricação, caracterização e aplicações do compósito PZT/PVDF". Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/100281.
Texto completo da fonteConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Um material compósito é constituído pela combinação de dois ou mais materiais, onde se procura sintetizar um novo material multifásico, e que abrigue as melhores características individuais de cada um de seus constituintes. Compósitos de polímeros (matriz) e ferroelétricos (inclusões) podem manifestar piezoeletricidade, ou seja, a produção de uma resposta elétrica devido a uma excitação mecânica, e vice-versa. Nesta tese o material polimérico usado para preparar os filmes ou lâminas de nanocompósitos é o PVDF, e, o material cerâmico é formado por nanopartículas de PZT. Ambos os materiais são dielétricos, porém, com características muito distintas (por exemplo, o PVDF tem aproximadamente 1/4 da densidade e 1/250 da constante dielétrica do PZT). O PZT é muito utilizado em transdutores, principalmente devido aos seus elevados coeficientes piezoelétricos, contudo, é quebradiço e sofre desgaste quando empregado na forma de filmes ou lâminas. Por outro lado, o PVDF é um polímero piezoelétrico que apresenta grande flexibilidade e excelentes resistências mecânica e química, porém, seus coeficientes piezoelétricos são apenas moderados. A fim de se aumentar a flexibilidade do PZT, mistura-se o pó cerâmico, na forma de nanopartículas, com o PVDF, também pulverizado. Na tese, evidencia-se que o compósito constituído por esta combinação cerâmica-polímero proporciona uma nova classe de materiais funcionais com grande potencial de aplicação, por terem combinadas a resistência e rigidez das cerâmicas, e, a elasticidade, flexibilidade, baixa densidade e elevada resistência a ruptura mecânica dos polímeros. O novo material tem grande resistência a choques mecânicos, flexibilidade, maleabilidade, e, principalmente, coeficientes piezoelétricos relativamente elevados. Amostras do compósito...
A composite material is constituted by the combination of two or more materials, which synthesizes a new multiphase material, and has the best individual characteristics of each of its constituents. Polymer composites (matrix) and ferroelectric (inclusions) can express piezoelectricity, i.e. the production of an electrical response due to a mechanical excitation, and vice versa. In this thesis the polymeric material used to prepare the films or slides of nanocomposites is the PVDF, and, ceramic material is formed by PZT nanoparticles. Both materials are dielectrics, however, with very different characteristics (for example, the PVDF is approximately 1/4 density and 1/250 relative permittivity from PZT). The PZT is widely used in transducers, mainly due to their high piezoelectric coefficients, however, is brittle and suffers wear and tear when employed in the form of films or slides. On the other hand, the PVDF is a piezoelectric polymer that offers great flexibility and excellent mechanical and chemical resistances, however, its piezoelectric coefficients are only moderate. In order to increase the flexibility of PZT, ceramic powder is mix, in the form of nanoparticles, with PVDF, also sprayed. In theory, it becomes evident that composite consisting of this ceramic- polymer combination delivers a new class of functional materials with great potential for application, because they combine the strength and rigidity of ceramics, and elasticity, flexibility, low density and high resistance to mechanical disruption of polymers. The new material has great resistance to mechanical shock, flexibility, suppleness, and, primarily, relatively high piezoelectric coefficients. PZT/PVDF composite samples were fabricated and characterized aiming to applications such as: piezoelectric actuators, acoustic emission detectors, and energy... (Complete abstract click electronic access below)
Palmer, Nathan Reed. "Smart Composites evaluation of embedded sensors in composite materials /". Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/palmer/PalmerN0809.pdf.
Texto completo da fonteKarlsson, Johan. "Composite material in car hood : Investigation of possible sandwich materials". Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45633.
Texto completo da fontePodnos, Eugene Grigorievich. "Application of fictitious domain method to analysis of composite materials /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteYan, Chang (Karen). "On homogenization and de-homogenization of composite materials /". Philadelphia, Pa. : Drexel University, 2003. http://dspace.library.drexel.edu/handle/1860/246.
Texto completo da fonteSymington, Mark C. "Cellulose based composite materials". Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501684.
Texto completo da fonteDyer, K. P. "Fatigue of composite materials". Thesis, Swansea University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636755.
Texto completo da fonteYang, Heechun. "Modeling the processing science of thermoplastic composite tow prepreg materials". Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17217.
Texto completo da fonteGambone, Livio R. "The effect of R-ratio on the mode II fatigue delamination growth of unidirectional carbon/epoxy composites". Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29968.
Texto completo da fonteApplied Science, Faculty of
Materials Engineering, Department of
Graduate
Counts, William Arthur. "Mechanical behavior of bolted composite joints at elevated temperature". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17315.
Texto completo da fonteLivros sobre o assunto "Composite materials Al"
Koohgilani, Mehran. Advanced composite materials: Composite material's history. Poole: Bournemouth University, 2001.
Encontre o texto completo da fonteNational Institute for Aviation Research (U.S.), ed. Composite materials handbook. [Warrendale, Pa.]: SAE International on behalf of CMH-17, a division of Wichita State University, 2012.
Encontre o texto completo da fonteInstitute of Materials (London, England), ed. Engineering composite materials. 2a ed. London: IOM, 1999.
Encontre o texto completo da fonteNational Institute for Aviation Research (U.S.), ed. Composite materials handbook: Polymer matrix composites, materials properties. Warrendale, Pa.]: SAE International on behalf of CMH-17, a division of Wichita State University, 2018.
Encontre o texto completo da fonteNielsen, Lauge Fuglsang. Composite Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27680-7.
Texto completo da fonteChawla, Krishan K. Composite Materials. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2966-5.
Texto completo da fonteBerthelot, Jean-Marie. Composite Materials. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0527-2.
Texto completo da fonteKar, Kamal K., ed. Composite Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49514-8.
Texto completo da fonteChawla, Krishan K. Composite Materials. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28983-6.
Texto completo da fonteChawla, Krishan Kumar. Composite Materials. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-3912-1.
Texto completo da fonteCapítulos de livros sobre o assunto "Composite materials Al"
Ambrosio, L., G. Carotenuto e L. Nicolais. "Composite materials". In Handbook of Biomaterial Properties, 214–69. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5801-9_18.
Texto completo da fonteAskeland, Donald R. "Composite Materials". In The Science and Engineering of Materials, 170–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0443-2_16.
Texto completo da fonteGatewood, B. E. "Composite materials". In Virtual Principles in Aircraft Structures, 582–610. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1165-9_16.
Texto completo da fonteJohn, Vernon. "Composite Materials". In Introduction to Engineering Materials, 295–302. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-21976-6_21.
Texto completo da fonteRamírez, Alejandro Manzano, e Enrique V. Barrera. "Composite Materials". In Synthesis and Properties of Advanced Materials, 149–94. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6339-6_6.
Texto completo da fonteAskeland, Donald R. "Composite Materials". In The Science and Engineering of Materials, 549–94. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2895-5_16.
Texto completo da fonteBiermann, Dirk. "Composite Materials". In CIRP Encyclopedia of Production Engineering, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_6396-4.
Texto completo da fonteJones, F. R. "Composite materials". In Chemistry and Technology of Epoxy Resins, 256–302. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2932-9_8.
Texto completo da fonteBiermann, Dirk. "Composite Materials". In CIRP Encyclopedia of Production Engineering, 311–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_6396.
Texto completo da fonteGdoutos, Emmanuel E. "Composite Materials". In Fracture Mechanics, 333–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Composite materials Al"
Dinesh, A. "Development of Self-Sensing Cement Composite Using Nanomaterials for Structural Health Monitoring of Concrete Columns – A Comprehensive Review". In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-23.
Texto completo da fonteKirk, G. E. "Composite Materials for Future Aeroengines". In ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-313.
Texto completo da fontePrabhuram, T., V. Somurajan e S. Prabhakaran. "Hybrid composite materials". In International Conference on Frontiers in Automobile and Mechanical Engineering (FAME 2010). IEEE, 2010. http://dx.doi.org/10.1109/fame.2010.5714794.
Texto completo da fonteSobey, Daniel L., Marcus K. Chao e David L. Garrett. "Interior Composite Materials". In Passenger Car Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/851632.
Texto completo da fonteDayananthan, C., e R. Manikandan. "Nano composite materials". In International Conference on Nanoscience, Engineering and Technology (ICONSET 2011). IEEE, 2011. http://dx.doi.org/10.1109/iconset.2011.6167927.
Texto completo da fonteRazavi Setvati, Mahdi, Zahiraniza Mustaffa, Nasir Shafiq e Zubair Imam Syed. "A Review on Composite Materials for Offshore Structures". In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23542.
Texto completo da fonteRusnakova, S., D. Kucerka, S. Husar, R. Hrmo, M. Kucerkova e V. Rusnak. "Education in Composite Materials". In 2013 International Conference on Interactive Collaborative Learning (ICL). IEEE, 2013. http://dx.doi.org/10.1109/icl.2013.6644572.
Texto completo da fonteHartman, Paul, e David Erb. "Pultruded Composite Ballistic Materials". In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1556.
Texto completo da fonteTillmann, W., E. Vogli, K. Weidenmann e K. Fleck. "Reinforced Lightweight Composite Materials". In ITSC2005, editado por E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p1064.
Texto completo da fonteKhoramishad, Hadi, e Mohammad Vahab Mousavi. "Hybrid polymer composite materials". In THE 7TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123100.
Texto completo da fonteRelatórios de organizações sobre o assunto "Composite materials Al"
Lee, Max. Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1996. http://dx.doi.org/10.21236/ada316048.
Texto completo da fonteMcCullough, Roy L., e Diane S. Kukich. Composites 2000: An International Symposium on Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, junho de 2000. http://dx.doi.org/10.21236/ada384778.
Texto completo da fonteWadley, H. N. G., J. A. Simmons, R. B. Clough, F. Biancaniello, E. Drescher-Krasicka, M. Rosen, T. Hsieh e K. Hirschman. Composite materials interface characterization. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.87-3630.
Texto completo da fonteSpangler, Lee. Composite Materials for Optical Limiting. Fort Belvoir, VA: Defense Technical Information Center, abril de 2001. http://dx.doi.org/10.21236/ada396124.
Texto completo da fonteMagness, F. H. Joining of polymer composite materials. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/6334940.
Texto completo da fonteAnderson, D. P., e B. P. Rice. Intrinsically Survivable Structural Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, abril de 2000. http://dx.doi.org/10.21236/ada387309.
Texto completo da fonteAnderson, David P., Chenggang Chen, Larry Cloos e Thao Gibson. Intrinsically Survivable Structural Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2001. http://dx.doi.org/10.21236/ada388001.
Texto completo da fontePapanicolaou, G. C. Effective Behavior of Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, abril de 1985. http://dx.doi.org/10.21236/ada158941.
Texto completo da fonteWang, S. S., S. S. Wang e Dale W. Fitting. Composite materials for offshore operations. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.sp.887.
Texto completo da fonteUnroe, Marilyn R. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada600876.
Texto completo da fonte