Literatura científica selecionada sobre o tema "Composite beams"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Composite beams".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Composite beams"
Zhao, Wei Jian, Jia Xin Tong, Shen Ming Yuan e Ye Nan Guo. "Research Progress on Reinforced Concrete Composite Beam in China". Applied Mechanics and Materials 584-586 (julho de 2014): 939–43. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.939.
Texto completo da fonteEndriatno, Nanang. "Experimental Investigation on Vibration Responses of Fiberglass Reinforced Plastic". International Journal of Engineering and Computer Science 10, n.º 4 (26 de abril de 2021): 25316–20. http://dx.doi.org/10.18535/ijecs/v10i4.4575.
Texto completo da fonteAl-Thabhawee, Hayder Wafi. "Experimental investigation of composite steel–concrete beams using symmetrical and asymmetrical castellated beams". Curved and Layered Structures 9, n.º 1 (1 de janeiro de 2022): 227–35. http://dx.doi.org/10.1515/cls-2022-0019.
Texto completo da fonteHUANG, C. W., e Y. H. SU. "DYNAMIC CHARACTERISTICS OF PARTIAL COMPOSITE BEAMS". International Journal of Structural Stability and Dynamics 08, n.º 04 (dezembro de 2008): 665–85. http://dx.doi.org/10.1142/s0219455408002946.
Texto completo da fonteSong, Xingyu, Yan Liu, Xiaodong Fu, Hongwei Ma e Xiaolun Hu. "Experimental Study on Flexural Behaviour of Prestressed Specified Density Concrete Composite Beams". Sustainability 14, n.º 22 (8 de novembro de 2022): 14727. http://dx.doi.org/10.3390/su142214727.
Texto completo da fonteUmer Sial, Sardar, e M. Iqbal Khan. "Performance of Strain hardening cementitious composite as strengthening and protective overlay in flexural members". MATEC Web of Conferences 199 (2018): 09005. http://dx.doi.org/10.1051/matecconf/201819909005.
Texto completo da fonteLu, Tingting, Kai Guan e Haowei Jin. "Experimental Study on Bending Performance of High-Performance Fiber-Reinforced Cement Composite Prefabricated Monolithic Composite Beams". Buildings 13, n.º 7 (10 de julho de 2023): 1744. http://dx.doi.org/10.3390/buildings13071744.
Texto completo da fonteWang, Boxin, Ruichang Fang e Qing Wang. "Flexural Behavior of Fiber-Reinforced Self-Stressing Concrete T-Shaped Composite Beams". Advances in Civil Engineering 2020 (24 de junho de 2020): 1–17. http://dx.doi.org/10.1155/2020/8810440.
Texto completo da fonteHan, Xiaoli, Jian Dai, Wei Qian, Zhaoyang Zhu e Baolong Li. "Effects of dowels on the mechanical properties of wooden composite beams in ancient timber structures". BioResources 16, n.º 4 (27 de agosto de 2021): 6891–909. http://dx.doi.org/10.15376/biores.16.4.6891-6909.
Texto completo da fonteMaaroof, Atyaf Abdul Azeez, Jasim Ali Abdullah e Suhaib Yahya Kasim. "Performance of Steel Perforated and Partially-Encased Composite Self-Connected Beams". Jurnal Kejuruteraan 34, n.º 4 (30 de julho de 2022): 703–17. http://dx.doi.org/10.17576/jkukm-2022-34(4)-18.
Texto completo da fonteTeses / dissertações sobre o assunto "Composite beams"
Bhutta, Salman Ahmed. "Analytical modeling of hybrid composite beams". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020112/.
Texto completo da fonteMegharief, Jihad Dokali. "Behavior of composite castellated beams". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37273.pdf.
Texto completo da fonteMolenstra, Nadia Julia. "Ultimate strength of composite beams". Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/34713/.
Texto completo da fonteFan, Chun Keung Roger. "Buckling in continuous composite beams". Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/106724/.
Texto completo da fonteJamal, Dany. "Solution methods of composite beams". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-264913.
Texto completo da fonteDo, Nascimento Oliveira Jose Emidio. "Deformation and damage analysis of composite beams equipped with polyvinylidene fluoride film sensors /". [S.l. : s.n.], 2008. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1001&context=td_cput.
Texto completo da fonteKong, Yow Wai. "Computer aided design of composite beams". Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63364.
Texto completo da fonteRakib, Saad Namik. "The behaviour of continuous composite beams". Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425983.
Texto completo da fonteBARROS, LUIS PAULO FRANCO DE. "PIEZOELECTRIC PATCHES MODELING FOR COMPOSITE BEAMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26509@1.
Texto completo da fonteEsta dissertação trata da modelagem dos esforços transmitidos por atuadores piezoelétricos, colados ou embutidos em vigas compósitas laminadas. O trabalho é motivado por aplicações na área de materiais e estruturas inteligentes. Em particular, procura-se avaliar o comportamento de diferentes teorias aproximadas nas faixas de médias e altas frequências, quando os comprimentos de onda podem ser da ordem da espessura da viga. Nestes casos, teorias tradicionais de vigas deixam de representar com acuracidade a resposta dinâmica de estruturas compósitas. Além disso, modelos convencionais que procuram representar os esforços gerados pelo atuador por forças e momentos fletores equivalentes, geralmente resultantes de uma análise estática, deixam de ser efetivos. São estudados modelos baseados na Teoria Clássica de Laminação (hipótese cinemática de Bernoulli-Euler) e na Teoria de Deformação Cisalhante de Primeira Ordem (hipótese cinemática de Timonshenko) e na Teoria discreta de Laminação proposta por Reddy (Reddy’s Layerwise Theory). Os três modelos são escritos na forma de equações de estado, e um método de solução é proposto para se obter a matriz de impedância dos atuadores. Resultados dos modelos estudados são comparados com os obtidos pelo método dos elementos finitos (código ANSYStm). São apresentados resultados para atuadores formados por camadas de PZT e Alumínio, bem como por camadas intercaladas de PZT, Aramide-Epóxi e Alumínio.
This dissertation addresses the problem of modeling the excitation of laminated composite beams by piezoelectric patches bonded or embedded in the structure. This work has been motivated by applications in the field of smart structures and materials. In particular, attention is paid to the electromechanical response in the high-frequency range. An attempt is made to evaluate the capabilities of different laminate theories in the medium and high-frequency ranges, where traditional models, such as the Classical (Bernouli-Euler) or First Order Shear Deformation (Timoshenko) theories, fail to provide accurate assessments of the structural dynamic response. Also, at these frequency ranges, conventional approaches to model the piezoelectric excitation via equivalent forces and bending moments, usually resulting from static analysis, are no longer satisfactory. Three different laminate theories are investigated: Classical, First Order Shear Deformation, and Reddy’s Layerwise theories. In the frequency domain, the governing electro-elastodynamic equations are written in a common state space formulation. A general method of solution is presented where the impedance matrix for the actuator is analytically evaluated. Comparisons are also made with numerical models obtained from a commercial finite element code.
Adhikari, Samiran. "High-definition Modeling of Composite Beams". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627666419572229.
Texto completo da fonteLivros sobre o assunto "Composite beams"
Fan, Chun Keung Roger. Buckling in continuous composite beams. [s.l.]: typescript, 1990.
Encontre o texto completo da fonteMolenstra, Nadia Julia. Ultimate strength of composite beams. [s.l.]: typescript, 1990.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Flutter analysis of composite box beams. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteKissane, Robert J. Lateral restraint of non-composite beams. Albany, NY: New York State Dept. of Transportation, Engineering Research and Development Bureau, 1985.
Encontre o texto completo da fonteDarwin, David. Steel and composite beams with web openings: Design of steel and composite beams with web openings. Chicago, Ill: American Institute of Steel Construction, 1990.
Encontre o texto completo da fonteBanks, H. Thomas. On damping mechanisms in beams. Hampton, Va: ICASE, 1989.
Encontre o texto completo da fonteCenter, Lewis Research, ed. Free vibrations of delaminated beams. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Encontre o texto completo da fonteGhorashi, Mehrdaad. Statics and Rotational Dynamics of Composite Beams. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14959-2.
Texto completo da fonteLibrescu, Liviu. Thin-walled composite beams: Theory and application. Dordrecht: Springer, 2006.
Encontre o texto completo da fonteW, Hyer M., e United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Large deformation dynamic bending of composite beams. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Composite beams"
Dolan, Charles W., e H. R. Hamilton. "Composite Beams". In Prestressed Concrete, 283–300. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97882-6_10.
Texto completo da fonteOñate, Eugenio. "3D Composite Beams". In Structural Analysis with the Finite Element Method Linear Statics, 150–232. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_4.
Texto completo da fonteStrømmen, Einar N. "Stresses in Composite Beams". In Structural Mechanics, 149–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44318-4_7.
Texto completo da fonteOñate, Eugenio. "Composite Laminated Plane Beams". In Structural Analysis with the Finite Element Method Linear Statics, 98–149. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_3.
Texto completo da fonteÖchsner, Andreas, e M. Merkel. "Beams of Composite Materials". In One-Dimensional Finite Elements, 209–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31797-2_9.
Texto completo da fonteÖchsner, Andreas, e Markus Merkel. "Beams of Composite Materials". In One-Dimensional Finite Elements, 205–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75145-0_9.
Texto completo da fonteGangaRao, Hota V. S., e Woraphot Prachasaree. "Analysis of FRP Composite Beams". In FRP Composite Structures, 149–203. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003196754-5.
Texto completo da fonteGay, Daniel. "Torsion of Composite Beams of Any Section Shape". In Composite Materials, 377–85. 4a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-20.
Texto completo da fonteGay, Daniel. "Bending of Composite Beams of Any Section Shape". In Composite Materials, 355–76. 4a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-19.
Texto completo da fonteKvočák, Vincent, e Daniel Dubecký. "Fatigue Tests of Composite Beams". In SpringerBriefs in Applied Sciences and Technology, 79–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66925-6_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Composite beams"
McCarrick, James. "A Composite Target Concept for Multi-Pulse Radiography". In BEAMS 2002: 14th International Conference on High-Power Particle Beams. AIP, 2002. http://dx.doi.org/10.1063/1.1530821.
Texto completo da fonteSheehan, Therese, Xianghe Dai, Jie Yang, Kan Zhou e Dennis Lam. "Flexural behaviour of composite slim floor beams". In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.6963.
Texto completo da fonte"Cyclic Response of Composite Coupling Beams". In SP-174: Hybrid and Composite Structures. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5959.
Texto completo da fonteBradford, Mark A., Yong-Lin Pi e Brian Uy. "Ductility of Composite Beams with Trapezoidal Composite Slabs". In International Conference on Composite Construction in Steel and Concrete 2008. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41142(396)13.
Texto completo da fonteAggelopoulos, Eleftherios, Francois Hanus e Mark Lawson. "Shear connection requirements for composite cellular beams". In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7161.
Texto completo da fonteVivek, P. G., Ankuran Saha, Apurba Das, Kazuaki Inaba e Amit Karmakar. "Stiffness Analysis of Delaminated Composite Beams Using Roller Clamps". In ASME 2021 Gas Turbine India Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gtindia2021-76042.
Texto completo da fonteKumar, T. Hemanth, e G. Sri Harsha. "Finite element analysis of composite beams". In SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0057910.
Texto completo da fonteGardner, Leroy, Merih Kucukler e Lorenzo Macorini. "Deformation-Based Design of Composite Beams". In International Conference on Composite Construction in Steel and Concrete 2013. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479735.011.
Texto completo da fonteGizejowski, Marian A., e Wael A. Salah. "Numerical Modeling of Composite Castellated Beams". In International Conference on Composite Construction in Steel and Concrete 2008. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41142(396)45.
Texto completo da fonteEmam, Samir A., e Ali H. Nayfeh. "Postbuckling and Free Vibrations of Composite Beams". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35007.
Texto completo da fonteRelatórios de organizações sobre o assunto "Composite beams"
Ferrante, César A. O., Sebastião A. L. de Andrade, Luciano R. O. de Lima e Pedro C. G. da S. Vellasco. BEHAVIOUR OF COMPOSITE BEAMS WITH EMBEDDED COMPRESSION FLANGE. The Hong Kong Institute of Steel Construction, dezembro de 2018. http://dx.doi.org/10.18057/icass2018.p.116.
Texto completo da fontePortela, Genock, Ulises Barajas e Jose A. Albarran-Garcia. Analysis and Load Rating of Pre-flex Composite Beams. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2011. http://dx.doi.org/10.21236/ada550595.
Texto completo da fonteAl-Chaar, Ghassan, Steven Sweeney, Richard Lampo e Marion Banko. Full-scale testing of thermoplastic composite I-Beams for bridges. Construction Engineering Research Laboratory (U.S.), junho de 2017. http://dx.doi.org/10.21079/11681/22641.
Texto completo da fonteGoodman, Daniel. Advanced Low-Cost Composite Curing With High Energy Electron Beams. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1998. http://dx.doi.org/10.21236/ada358391.
Texto completo da fonteZhu, Ting, Shenggang Fan, Yunlong Han, Runmin Ding e Yang Li. Numerical Investigation on Fire Resistance of Stainless Steel Composite Beams with Rectangular Section. The Hong Kong Institute of Steel Construction, dezembro de 2018. http://dx.doi.org/10.18057/icass2018.p.134.
Texto completo da fonteTang, Po-Yun. Bending Deformation Increase of Bending-Extension Coupled Composite Beams Bonded with Actuator(s). Fort Belvoir, VA: Defense Technical Information Center, outubro de 1995. http://dx.doi.org/10.21236/ada302002.
Texto completo da fonteBank, Lawrence C., Anthony J. Lamanna, James C. Ray e Gerardo I. Velazquez. Rapid Strengthening of Reinforced Concrete Beams with Mechanically Fastened, Fiber-Reinforced Polymeric Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, março de 2002. http://dx.doi.org/10.21236/ada400415.
Texto completo da fonteRamesh, Selvarajah, Lisa Choe, Mina Seif, Matthew Hoehler, William Grosshandler, Ana Sauca, Matthew Bundy et al. Compartment fire experiments on long-span composite-beams with simple shear connections part 1:. Gaithersburg, MD: National Institute of Standards and Technology, outubro de 2019. http://dx.doi.org/10.6028/nist.tn.2054.
Texto completo da fonteChoe, Lisa, Selvarajah Ramesh, Matthew Hoehler, Mina Seif, Matthew Bundy, John Reilly e Branko Glisic. Compartment fire experiments on long-span composite-beams with simple shear connections part 2:. Gaithersburg, MD: National Institute of Standards and Technology, novembro de 2019. http://dx.doi.org/10.6028/nist.tn.2055.
Texto completo da fonteRafeeq, Ranj. Torsional Strengthening of Reinforced Concrete Beams Using CFRP Composites. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.3121.
Texto completo da fonte