Artigos de revistas sobre o tema "Complexe vagal"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Complexe vagal".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Champeil-Potokar, G., O. Rampin, A. M. Davila, D. Hermier, G. Boudry, V. Douard e I. Denis. "Plasticité gliale dans le complexe dorso-vagal en réponse à des régimes « gras-sucrés » de type occidental". Nutrition Clinique et Métabolisme 35, n.º 1 (abril de 2021): 35. http://dx.doi.org/10.1016/j.nupar.2021.01.033.
Texto completo da fonteCaspar, V., T. Charleux, A. Beddok, N. Giraud, B. Bernard, M. Martin, J. Thariat, C. Dupin, A. Huchet e V. Vendrely. "Impact dosimétrique de la dose au complexe vagal dorsal et survenue de nausées en cours de radiothérapie". Cancer/Radiothérapie 25, n.º 6-7 (outubro de 2021): 734–35. http://dx.doi.org/10.1016/j.canrad.2021.07.018.
Texto completo da fonteChampeil-Potokar, G., L. Jaulin, M. S. Hjeij, A. Couvineau, A. Blais e I. Denis. "Effets d’un régime gras-sucré (GS) et d’un traitement aux orexines A (OxA) sur la plasticité gliale dans le complexe dorso-vagal chez la souris". Nutrition Clinique et Métabolisme 36, n.º 1 (fevereiro de 2022): S13. http://dx.doi.org/10.1016/j.nupar.2021.12.024.
Texto completo da fonteOkumura, T., I. L. Taylor e T. N. Pappas. "Microinjection of TRH analogue into the dorsal vagal complex stimulates pancreatic secretion in rats". American Journal of Physiology-Gastrointestinal and Liver Physiology 269, n.º 3 (1 de setembro de 1995): G328—G334. http://dx.doi.org/10.1152/ajpgi.1995.269.3.g328.
Texto completo da fonteViard, Eddy, Zhongling Zheng, Shuxia Wan e R. Alberto Travagli. "Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion". American Journal of Physiology-Gastrointestinal and Liver Physiology 293, n.º 2 (agosto de 2007): G493—G500. http://dx.doi.org/10.1152/ajpgi.00118.2007.
Texto completo da fonteWang, Sheng-Zhi, Xiao-Dong Liu, Yu-Xin Huang, Qing-Jiu Ma e Jing-Jie Wang. "Disruption of Glial Function Regulates the Effects of Electro-Acupuncture at Tsusanli on Gastric Activity in Rats". American Journal of Chinese Medicine 37, n.º 04 (janeiro de 2009): 647–56. http://dx.doi.org/10.1142/s0192415x09007132.
Texto completo da fonteHornby, Pamela J. "II. Excitatory amino acid receptors in the brain-gut axis". American Journal of Physiology-Gastrointestinal and Liver Physiology 280, n.º 6 (1 de junho de 2001): G1055—G1060. http://dx.doi.org/10.1152/ajpgi.2001.280.6.g1055.
Texto completo da fontePowley, Terry L. "Brain-gut communication: vagovagal reflexes interconnect the two “brains”". American Journal of Physiology-Gastrointestinal and Liver Physiology 321, n.º 5 (1 de novembro de 2021): G576—G587. http://dx.doi.org/10.1152/ajpgi.00214.2021.
Texto completo da fontePowley, Terry L., e Robert J. Phillips. "I. Morphology and topography of vagal afferents innervating the GI tract". American Journal of Physiology-Gastrointestinal and Liver Physiology 283, n.º 6 (1 de dezembro de 2002): G1217—G1225. http://dx.doi.org/10.1152/ajpgi.00249.2002.
Texto completo da fonteRusetsky, I. I. "0 trigemino-vagal reflex". Kazan medical journal 18, n.º 2 (23 de setembro de 2021): 84–104. http://dx.doi.org/10.17816/kazmj79881.
Texto completo da fonteChen, S. L., X. Y. Wu, Z. J. Cao, J. Fan, M. Wang, C. Owyang e Y. Li. "Subdiaphragmatic vagal afferent nerves modulate visceral pain". American Journal of Physiology-Gastrointestinal and Liver Physiology 294, n.º 6 (junho de 2008): G1441—G1449. http://dx.doi.org/10.1152/ajpgi.00588.2007.
Texto completo da fonteChung, S. A., e N. E. Diamant. "Small intestinal motility in fasted and postprandial states: effect of transient vagosympathetic blockade". American Journal of Physiology-Gastrointestinal and Liver Physiology 252, n.º 3 (1 de março de 1987): G301—G308. http://dx.doi.org/10.1152/ajpgi.1987.252.3.g301.
Texto completo da fonteDusi, Veronica, e Gaetano Maria De Ferrari. "Vagal stimulation in heart failure". Herz 46, n.º 6 (30 de outubro de 2021): 541–49. http://dx.doi.org/10.1007/s00059-021-05076-5.
Texto completo da fonteArdell, J. L., e W. C. Randall. "Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart". American Journal of Physiology-Heart and Circulatory Physiology 251, n.º 4 (1 de outubro de 1986): H764—H773. http://dx.doi.org/10.1152/ajpheart.1986.251.4.h764.
Texto completo da fonteTan, Zhenjun, Ronald Fogel, Chunhui Jiang e Xueguo Zhang. "Galanin Inhibits Gut-Related Vagal Neurons in Rats". Journal of Neurophysiology 91, n.º 5 (maio de 2004): 2330–43. http://dx.doi.org/10.1152/jn.00869.2003.
Texto completo da fonteKrowicki, Z. K., A. Arimura, N. A. Nathan e P. J. Hornby. "Hindbrain effects of PACAP on gastric motor function in the rat". American Journal of Physiology-Gastrointestinal and Liver Physiology 272, n.º 5 (1 de maio de 1997): G1221—G1229. http://dx.doi.org/10.1152/ajpgi.1997.272.5.g1221.
Texto completo da fonteRogers, R. C., D. M. McTigue e G. E. Hermann. "Vagovagal reflex control of digestion: afferent modulation by neural and "endoneurocrine" factors". American Journal of Physiology-Gastrointestinal and Liver Physiology 268, n.º 1 (1 de janeiro de 1995): G1—G10. http://dx.doi.org/10.1152/ajpgi.1995.268.1.g1.
Texto completo da fonteKollai, M., G. Jokkel, I. Bonyhay, J. Tomcsanyi e A. Naszlady. "Relation between baroreflex sensitivity and cardiac vagal tone in humans". American Journal of Physiology-Heart and Circulatory Physiology 266, n.º 1 (1 de janeiro de 1994): H21—H27. http://dx.doi.org/10.1152/ajpheart.1994.266.1.h21.
Texto completo da fonteMartinmäki, Kaisu, Heikki Rusko, Libbe Kooistra, Joni Kettunen e Sami Saalasti. "Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts". American Journal of Physiology-Heart and Circulatory Physiology 290, n.º 2 (fevereiro de 2006): H640—H647. http://dx.doi.org/10.1152/ajpheart.00054.2005.
Texto completo da fonteLi, Y., e C. Owyang. "Somatostatin inhibits pancreatic enzyme secretion at a central vagal site". American Journal of Physiology-Gastrointestinal and Liver Physiology 265, n.º 2 (1 de agosto de 1993): G251—G257. http://dx.doi.org/10.1152/ajpgi.1993.265.2.g251.
Texto completo da fonteChung, S. A., G. R. Greenberg e N. E. Diamant. "Relationship of postprandial motilin, gastrin, and pancreatic polypeptide release to intestinal motility during vagal interruption". Canadian Journal of Physiology and Pharmacology 70, n.º 8 (1 de agosto de 1992): 1148–53. http://dx.doi.org/10.1139/y92-159.
Texto completo da fonteMcTigue, D. M., e R. C. Rogers. "Pancreatic polypeptide stimulates gastric acid secretion through a vagal mechanism in rats". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 269, n.º 5 (1 de novembro de 1995): R983—R987. http://dx.doi.org/10.1152/ajpregu.1995.269.5.r983.
Texto completo da fonteSalim, Aws S. "Surgery or chemoneurolysis for complete vagal denervation of rat stomach?" Digestive Diseases and Sciences 36, n.º 8 (agosto de 1991): 1074–78. http://dx.doi.org/10.1007/bf01297449.
Texto completo da fonteMazgalev, T., L. S. Dreifus, E. L. Michelson e A. Pelleg. "Vagally induced hyperpolarization in atrioventricular node". American Journal of Physiology-Heart and Circulatory Physiology 251, n.º 3 (1 de setembro de 1986): H631—H643. http://dx.doi.org/10.1152/ajpheart.1986.251.3.h631.
Texto completo da fonteFernandes, Camila. "Figuras do constrangimento: As instituições de Estado e as políticas de acusação sexual". Mana 25, n.º 2 (agosto de 2019): 365–90. http://dx.doi.org/10.1590/1678-49442019v25n2p365.
Texto completo da fonteEmch, Gregory S., Gerlinda E. Hermann e Richard C. Rogers. "TNF-α activates solitary nucleus neurons responsive to gastric distension". American Journal of Physiology-Gastrointestinal and Liver Physiology 279, n.º 3 (1 de setembro de 2000): G582—G586. http://dx.doi.org/10.1152/ajpgi.2000.279.3.g582.
Texto completo da fonteGujrathi, Atishkumar B., Vijayalaxmi Ambulgekar e Shrinivas Chavan. "Vagal Nerve Schwannoma: Presentation of Two Case Reports". An International Journal of Otorhinolaryngology Clinics 8, n.º 3 (2016): 116–18. http://dx.doi.org/10.5005/jp-journals-10003-1246.
Texto completo da fontevan de Wall, E. H. E. M., P. Duffy e R. C. Ritter. "CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 289, n.º 3 (setembro de 2005): R695—R703. http://dx.doi.org/10.1152/ajpregu.00809.2004.
Texto completo da fonteLee, Kun-Ze, Milapjit S. Sandhu, Brendan J. Dougherty, Paul J. Reier e David D. Fuller. "Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats". Journal of Applied Physiology 109, n.º 2 (agosto de 2010): 377–87. http://dx.doi.org/10.1152/japplphysiol.01429.2009.
Texto completo da fontePorta, A., P. Castiglioni, M. Di Rienzo, V. Bari, T. Bassani, A. Marchi, A. C. M. Takahashi et al. "Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information". Journal of Applied Physiology 113, n.º 12 (15 de dezembro de 2012): 1810–20. http://dx.doi.org/10.1152/japplphysiol.00755.2012.
Texto completo da fonteSatpathy, Shouvanik, Goutam Mondal, Anup Kumar Bhowmick e Aniruddha Dam. "Cervical Vagal Swannoma: A Case Report". Bangladesh Journal of Otorhinolaryngology 21, n.º 2 (7 de maio de 2016): 115–18. http://dx.doi.org/10.3329/bjo.v21i2.27651.
Texto completo da fonteEkmekçi, Hakan, e Hülagu Kaptan. "Vagal Nerve Stimulation". Open Access Macedonian Journal of Medical Sciences 5, n.º 3 (7 de maio de 2017): 391–94. http://dx.doi.org/10.3889/oamjms.2017.056.
Texto completo da fonteTravagli, R. Alberto, e Richard C. Rogers. "V. Fast and slow extrinsic modulation of dorsal vagal complex circuits". American Journal of Physiology-Gastrointestinal and Liver Physiology 281, n.º 3 (1 de setembro de 2001): G595—G601. http://dx.doi.org/10.1152/ajpgi.2001.281.3.g595.
Texto completo da fonteLatiș, Sandra-Maria-Vanessa, Alexandru-Dan Costache, Cristina Adam, Magda-Valeria Mitu e Florin Mitu. "Vagal Maneuvers in Treating Acute Supraventricular Tachycardia with Narrow QRS". Internal Medicine 20, n.º 3 (1 de outubro de 2023): 37–42. http://dx.doi.org/10.2478/inmed-2023-0257.
Texto completo da fonteYost, Bethany L., Gerald J. Gleich, David B. Jacoby e Allison D. Fryer. "The changing role of eosinophils in long-term hyperreactivity following a single ozone exposure". American Journal of Physiology-Lung Cellular and Molecular Physiology 289, n.º 4 (outubro de 2005): L627—L635. http://dx.doi.org/10.1152/ajplung.00377.2004.
Texto completo da fonteHall, K. E., T. Y. el-Sharkawy e N. E. Diamant. "Vagal control of canine postprandial upper gastrointestinal motility". American Journal of Physiology-Gastrointestinal and Liver Physiology 250, n.º 4 (1 de abril de 1986): G501—G510. http://dx.doi.org/10.1152/ajpgi.1986.250.4.g501.
Texto completo da fonteJammes, Y. "Tonic sensory pathways of the respiratory system". European Respiratory Journal 1, n.º 2 (1 de fevereiro de 1988): 176–83. http://dx.doi.org/10.1183/09031936.93.01020176.
Texto completo da fonteArmour, J. A., e W. C. Randall. "Rebound cardiovascular responses following stimulation of canine vagosympathetic complexes or cardiopulmonary nerves". Canadian Journal of Physiology and Pharmacology 63, n.º 9 (1 de setembro de 1985): 1122–32. http://dx.doi.org/10.1139/y85-184.
Texto completo da fontePoli, Andrea, Angelo Gemignani, Federico Soldani e Mario Miccoli. "A Systematic Review of a Polyvagal Perspective on Embodied Contemplative Practices as Promoters of Cardiorespiratory Coupling and Traumatic Stress Recovery for PTSD and OCD: Research Methodologies and State of the Art". International Journal of Environmental Research and Public Health 18, n.º 22 (10 de novembro de 2021): 11778. http://dx.doi.org/10.3390/ijerph182211778.
Texto completo da fonteAdriaensen, Dirk, Inge Brouns, Isabel Pintelon, Ian De Proost e Jean-Pierre Timmermans. "Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors". Journal of Applied Physiology 101, n.º 3 (setembro de 2006): 960–70. http://dx.doi.org/10.1152/japplphysiol.00267.2006.
Texto completo da fonteBendeck, M. P., e R. P. E. Reynolds. "Gastric and duodenal motility in the cat: the role of central innervation assessed by transient vagal blockade". Canadian Journal of Physiology and Pharmacology 64, n.º 6 (1 de junho de 1986): 712–16. http://dx.doi.org/10.1139/y86-119.
Texto completo da fonteHermann, G. E., G. S. Emch, C. A. Tovar e R. C. Rogers. "c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 280, n.º 1 (1 de janeiro de 2001): R289—R299. http://dx.doi.org/10.1152/ajpregu.2001.280.1.r289.
Texto completo da fonteHiga, Keila T., Eliana Mori, Fabiano F. Viana, Mariana Morris e Lisete C. Michelini. "Baroreflex control of heart rate by oxytocin in the solitary-vagal complex". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 282, n.º 2 (1 de fevereiro de 2002): R537—R545. http://dx.doi.org/10.1152/ajpregu.00806.2000.
Texto completo da fonteFacchini, Mario, Gaetano M. De Ferrari, Oscar Bonazzi, Theodore Weiss e Peter J. Schwartz. "Effect of reflex vagal activation on frequency of ventricular premature complexes". American Journal of Cardiology 68, n.º 4 (agosto de 1991): 349–54. http://dx.doi.org/10.1016/0002-9149(91)90830-e.
Texto completo da fonteDemir, Semahat S., John W. Clark e Wayne R. Giles. "Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model". American Journal of Physiology-Heart and Circulatory Physiology 276, n.º 6 (1 de junho de 1999): H2221—H2244. http://dx.doi.org/10.1152/ajpheart.1999.276.6.h2221.
Texto completo da fonteGÖKSEL, ONUR SELÇUK, Emre Gok, Celalettin Karatepe, Çağla Canbay Sarılar, Mehmet Akif Önalan, Metin Onur Beyaz e Ufuk Alpagut. "Vascular Tumors of the Neck in Adults: 10-Year Experience in a Tertiary Center". Heart Surgery Forum 23, n.º 4 (20 de julho de 2020): E493—E497. http://dx.doi.org/10.1532/hsf.2769.
Texto completo da fonteBabic, Tanja, Ruchi Bhagat, Shuxia Wan, Kirsteen N. Browning, Michael Snyder, Samuel R. Fortna e R. Alberto Travagli. "Role of the vagus in the reduced pancreatic exocrine function in copper-deficient rats". American Journal of Physiology-Gastrointestinal and Liver Physiology 304, n.º 4 (15 de fevereiro de 2013): G437—G448. http://dx.doi.org/10.1152/ajpgi.00402.2012.
Texto completo da fonteCampos, Carlos A., Jason S. Wright, Krzysztof Czaja e Robert C. Ritter. "CCK-Induced Reduction of Food Intake and Hindbrain MAPK Signaling Are Mediated by NMDA Receptor Activation". Endocrinology 153, n.º 6 (16 de abril de 2012): 2633–46. http://dx.doi.org/10.1210/en.2012-1025.
Texto completo da fonteHayes, Matthew R., Scott E. Kanoski, Bart C. De Jonghe, Theresa M. Leichner, Amber L. Alhadeff, Samantha M. Fortin, Myrtha Arnold, Wolfgang Langhans e Harvey J. Grill. "The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301, n.º 5 (novembro de 2011): R1479—R1485. http://dx.doi.org/10.1152/ajpregu.00356.2011.
Texto completo da fonteRynkiewicz, Andrzej. "Attentive Perception Can Diminish Vagal Inhibition". Journal of Psychophysiology 20, n.º 1 (janeiro de 2006): 52–58. http://dx.doi.org/10.1027/0269-8803.20.1.52.
Texto completo da fonte