Artigos de revistas sobre o tema "Complementary wind production"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Complementary wind production".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Pimentel, Lauanne Oliveira, e Jeane de Almeida do Rosário. "Evaluation of Energy Complementarity Between Wind, Solar and Water Resources in the Municipality of Lages (Santa Catarina, Brazil)". Revista de Gestão Social e Ambiental 18, n.º 5 (15 de março de 2024): e05462. http://dx.doi.org/10.24857/rgsa.v18n5-030.
Texto completo da fonteCai, Wen Bin, Kang Du, Xing Peng e Hua Yang Liu. "Study on Pumping Units with Wind Power Generation Complementary Power Supply System". Advanced Materials Research 361-363 (outubro de 2011): 479–82. http://dx.doi.org/10.4028/www.scientific.net/amr.361-363.479.
Texto completo da fonteNogueira, Erika Carvalho, Rafael Cancella Morais e Amaro Olimpio Pereira. "Offshore Wind Power Potential in Brazil: Complementarity and Synergies". Energies 16, n.º 16 (10 de agosto de 2023): 5912. http://dx.doi.org/10.3390/en16165912.
Texto completo da fonteWang, Hui, Xiaowen Chen, Qianpeng Yang, Bowen Li, Zongyu Yue, Jeffrey Dankwa Ampah, Haifeng Liu e Mingfa Yao. "Optimization of Renewable Energy Hydrogen Production Systems Using Volatility Improved Multi-Objective Particle Swarm Algorithm". Energies 17, n.º 10 (15 de maio de 2024): 2384. http://dx.doi.org/10.3390/en17102384.
Texto completo da fonteHe, Xueqian, Tianguang Lu e Zhifan Liu. "Benefit Evaluation of Hydrogen Production System Harnessing Curtailed Wind Considering Integrated Demand Response". Journal of Physics: Conference Series 2584, n.º 1 (1 de setembro de 2023): 012020. http://dx.doi.org/10.1088/1742-6596/2584/1/012020.
Texto completo da fonteLu, Cun, Leping Yang, Wen Qi e Zhan Han. "Research on Control Strategy of Multi-Energy Complementary Microgrid for Wind-Solar Hydrogen Production". International Journal of Energy 5, n.º 3 (24 de dezembro de 2024): 11–14. https://doi.org/10.54097/30vt8h35.
Texto completo da fonteLu, Cun, Leping Yang, Wen Qi e Zhan Han. "Research on Control Strategy of Multi-energy Complementary Microgrid for Wind-solar Hydrogen Production". Journal of Innovation and Development 9, n.º 1 (19 de novembro de 2024): 18–22. http://dx.doi.org/10.54097/b1170w49.
Texto completo da fonteSellek, Andrew D., Naman S. Bajaj, Ilaria Pascucci, Cathie J. Clarke, Richard Alexander, Chengyan Xie, Giulia Ballabio et al. "Modeling JWST MIRI-MRS Observations of T Cha: Mid-IR Noble Gas Emission Tracing a Dense Disk Wind". Astronomical Journal 167, n.º 5 (17 de abril de 2024): 223. http://dx.doi.org/10.3847/1538-3881/ad34ae.
Texto completo da fonteSuo, Xun, Shuqiang Zhao e Yanfeng Ma. "Multipoint Layout Planning Method for Multienergy Sources Based on Complex Adaptive System Theory". International Transactions on Electrical Energy Systems 2022 (5 de julho de 2022): 1–15. http://dx.doi.org/10.1155/2022/8948177.
Texto completo da fonteGrant, E., K. Brunik, J. King e C. E. Clark. "Hybrid power plant design for low-carbon hydrogen in the United States". Journal of Physics: Conference Series 2767, n.º 8 (1 de junho de 2024): 082019. http://dx.doi.org/10.1088/1742-6596/2767/8/082019.
Texto completo da fonteSu, Wei, Qi Li, Wenjin Zheng, Yunyi Han, Zhenyue Yu, Zhang Bai e Yunbin Han. "Enhancing wind-solar hybrid hydrogen production through multi-state electrolyzer management and complementary energy optimization". Energy Reports 11 (junho de 2024): 1774–86. http://dx.doi.org/10.1016/j.egyr.2024.01.031.
Texto completo da fonteV, Chandra Mouli. "DESIGN AND DEVELOPMENT OF HYBRID POWER GENERATION BY SOLAR AND WIND ENERGY". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 03 (27 de março de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29722.
Texto completo da fonteMyksvoll, MS, AD Sandvik, IA Johnsen, J. Skarðhamar e J. Albretsen. "Impact of variable physical conditions and future increased aquaculture production on lice infestation pressure and its sustainability in Norway". Aquaculture Environment Interactions 12 (14 de maio de 2020): 193–204. http://dx.doi.org/10.3354/aei00359.
Texto completo da fonteShi, Xiaofei, Yu Qian e Siyu Yang. "Fluctuation Analysis of a Complementary Wind–Solar Energy System and Integration for Large Scale Hydrogen Production". ACS Sustainable Chemistry & Engineering 8, n.º 18 (14 de abril de 2020): 7097–110. http://dx.doi.org/10.1021/acssuschemeng.0c01054.
Texto completo da fonteSuhartati, Tatik, Sugeng Wahyudiono e Ricky Ricky. "Hubungan Karakteristik Biometrik Eucalytus pellita Terhadap Kerusakan Karena Angin". HUTAN TROPIKA 17, n.º 1 (2 de junho de 2022): 95–103. http://dx.doi.org/10.36873/jht.v17i1.4440.
Texto completo da fonteReul, N., B. Chapron, E. Zabolotskikh, C. Donlon, A. Mouche, J. Tenerelli, F. Collard et al. "A New Generation of Tropical Cyclone Size Measurements from Space". Bulletin of the American Meteorological Society 98, n.º 11 (1 de novembro de 2017): 2367–85. http://dx.doi.org/10.1175/bams-d-15-00291.1.
Texto completo da fonteCui, Jiahao, Zilin Liu, Naizhe Zhang e Xuanhua Guo. "Application of thermoflow in multi-energy complementary projects involving wind, solar, storage and fuel". Journal of Physics: Conference Series 2935, n.º 1 (1 de janeiro de 2025): 012005. https://doi.org/10.1088/1742-6596/2935/1/012005.
Texto completo da fonteXu, Beibei, Jingjing Zhang, Shuai Yuan, Huanhuan Li, Diyi Chen e Junzhi Zhang. "Comprehensive Regulation Benefits of Hydropower Generation System in Reducing Wind Power Fluctuation". Water 13, n.º 21 (22 de outubro de 2021): 2987. http://dx.doi.org/10.3390/w13212987.
Texto completo da fonteDr. P Rukmangadha, Nithin A, Rajashekara Reddy M S, Shashank G e Shashank M S. "Development of A Power Generation Unit Using Dual Renewable Energy Source". International Journal of Scientific Research in Mechanical and Materials Engineering 8, n.º 3 (22 de maio de 2024): 40–44. http://dx.doi.org/10.32628/ijsrmme24837.
Texto completo da fonteAntonijević, Vladimir, Lazar Mlađenović, Goran Dobrić e Mileta Žarković. "Optimalno dimenzionisanje mikromreže sa obnovljivim izvorima energije u Srbiji". Energija, ekonomija, ekologija XXIII, n.º 4 (2021): 16–22. http://dx.doi.org/10.46793/eee21-4.16a.
Texto completo da fonteHuang, Kaijie, Chengjun Qiu, Wenbin Xie, Wei Qu, Yuan Zhuang, Kaixuan Chen, Jiaqi Yan, Gao Huang, Chao Zhang e Jianfeng Hao. "Design of a Seawater Desalination System with Two-Stage Humidification and Dehumidification Desalination Driven by Wind and Solar Energy". Water 16, n.º 4 (18 de fevereiro de 2024): 609. http://dx.doi.org/10.3390/w16040609.
Texto completo da fonteZeng, Chun Nian, Hua Gui Chen e Yue Bao. "Complementary Power Controller of Wind-Solar Energy Based on Soft Switch PWM and Parallel Balanced Current Technology". Advanced Materials Research 588-589 (novembro de 2012): 638–44. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.638.
Texto completo da fonteLeseure, Michel. "From Aggregate Production Planning to Aggregate Energy Industrial Consumption Plans". Energies 17, n.º 24 (19 de dezembro de 2024): 6388. https://doi.org/10.3390/en17246388.
Texto completo da fonteLi, Jin Bin, Yao Yao, Tian Xia e Xiao Jiang Zheng. "Determination of Energy Storage Capacity for a Hybrid Renewable Power Generation System". Applied Mechanics and Materials 528 (fevereiro de 2014): 371–79. http://dx.doi.org/10.4028/www.scientific.net/amm.528.371.
Texto completo da fonteLahlou, Yahya, Abdelghani Hajji e Mohammed Aggour. "Optimization of a Management Algorithm for an Innovative System of Automatic Switching between Two Photovoltaic and Wind Turbine Modes for an Ecological Production of Green Energy". International Journal of Renewable Energy Development 12, n.º 1 (10 de setembro de 2022): 36–45. http://dx.doi.org/10.14710/ijred.2023.47137.
Texto completo da fonteYu, Shuai, Yi Yang, Shuqin Chen, Haowei Xing, Yinan Guo, Weijia Feng, Jianchao Zhang e Junhan Zhang. "Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production". Sustainability 16, n.º 5 (22 de fevereiro de 2024): 1811. http://dx.doi.org/10.3390/su16051811.
Texto completo da fonteAndal C., Kothai, e Jayapal R. "Improved GA based power and cost management system in a grid-associated PV-wind system". International Journal of Power Electronics and Drive Systems (IJPEDS) 12, n.º 4 (1 de dezembro de 2021): 2531. http://dx.doi.org/10.11591/ijpeds.v12.i4.pp2531-2544.
Texto completo da fonteLi, Zheng, Yan Qin, Xin Cao, Shaodong Hou e Hexu Sun. "Wind-Solar-Hydrogen Hybrid Energy Control Strategy Considering Delayed Power of Hydrogen Production". Electrotehnica, Electronica, Automatica 69, n.º 2 (15 de maio de 2021): 5–12. http://dx.doi.org/10.46904/eea.21.69.2.1108001.
Texto completo da fonteNnabuife, Somtochukwu Godfrey, Kwamena Ato Quainoo, Abdulhammed K. Hamzat, Caleb Kwasi Darko e Cindy Konadu Agyemang. "Innovative Strategies for Combining Solar and Wind Energy with Green Hydrogen Systems". Applied Sciences 14, n.º 21 (25 de outubro de 2024): 9771. http://dx.doi.org/10.3390/app14219771.
Texto completo da fonteBorges, Rui P., Flávia Franco, Fátima N. Serralha e Isabel Cabrita. "Green Hydrogen Production at the Gigawatt Scale in Portugal: A Technical and Economic Evaluation". Energies 17, n.º 7 (29 de março de 2024): 1638. http://dx.doi.org/10.3390/en17071638.
Texto completo da fonteLi, Shilong. "Optimization Planning Method for Power Supply Layout of Multi-Energy Power System". Journal of Physics: Conference Series 2503, n.º 1 (1 de maio de 2023): 012025. http://dx.doi.org/10.1088/1742-6596/2503/1/012025.
Texto completo da fonteAbdul Baseer, Mohammad, Anas Almunif, Ibrahim Alsaduni e Nazia Tazeen. "Electrical Power Generation Forecasting from Renewable Energy Systems Using Artificial Intelligence Techniques". Energies 16, n.º 18 (5 de setembro de 2023): 6414. http://dx.doi.org/10.3390/en16186414.
Texto completo da fontePraveen, V., V. Valsala, R. S. Ajayamohan e Sridhar Balasubramanian. "Oceanic Mixing over the Northern Arabian Sea in a Warming Scenario: Tug of War between Wind and Buoyancy Forces". Journal of Physical Oceanography 50, n.º 4 (abril de 2020): 945–64. http://dx.doi.org/10.1175/jpo-d-19-0173.1.
Texto completo da fonteWang, Weiwei, Yu Qi, Xiaolong Zhang, Pu Xie, Yingjun Guo e Hexu Sun. "Carbon Emission Optimization of the Integrated Energy System in Industrial Parks with Hydrogen Production from Complementary Wind and Solar Systems". Hydrogen 6, n.º 1 (31 de janeiro de 2025): 8. https://doi.org/10.3390/hydrogen6010008.
Texto completo da fonteFeng, Yi, Lei Jun Shao, Bang Ling Zhang, Meng Jie Wu, Yu Pei Shao, Qiang Qiang Liao, Guo Ding Zhou e Bo Sun. "Technical and Economic Analysis on Grid-Connected Wind Farm Based on Hybrid Energy Storage System for Active Distribution Network". Applied Mechanics and Materials 672-674 (outubro de 2014): 274–79. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.274.
Texto completo da fonteMa, Suliang, Zeqing Meng, Yang Mei, Mingxuan Chen e Yuan Jiang. "A Multi-Optimization Method for Capacity Configuration of Hybrid Electrolyzer in a Stand-Alone Wind-Photovoltaic-Battery System". Applied Sciences 15, n.º 6 (13 de março de 2025): 3135. https://doi.org/10.3390/app15063135.
Texto completo da fonteNikiforov, A. I., R. S. Khachatryan, M. G. Dolgikh e G. A. Shishanov. "The world’s best practices in the development of aquaculture in the framework of the implementation of projects for the multipurpose use of the infrastructure of the fuel and energy complex". Rybovodstvo i rybnoe hozjajstvo (Fish Breeding and Fisheries), n.º 8 (26 de agosto de 2023): 502–16. http://dx.doi.org/10.33920/sel-09-2308-01.
Texto completo da fonteMcWilliam, Michael K., Thanasis K. Barlas, Helge A. Madsen e Frederik Zahle. "Aero-elastic wind turbine design with active flaps for AEP maximization". Wind Energy Science 3, n.º 1 (4 de maio de 2018): 231–41. http://dx.doi.org/10.5194/wes-3-231-2018.
Texto completo da fonteKaissas, Ioannis, e Nikolaos Nikolaidis. "Analysis and optimization of small modular reactors contribution to the power production of Greece". Nuclear Technology and Radiation Protection 39, n.º 3 (2024): 173–84. https://doi.org/10.2298/ntrp2403173k.
Texto completo da fonteGowri, K. "DUAL-SOURCES ENERGY HARVESTING SYSTEM". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 10 (17 de outubro de 2024): 1–6. http://dx.doi.org/10.55041/ijsrem37991.
Texto completo da fonteLiao, Feng, e Ying Lu. "Control Technology of Smart Grid Considering Intermittent Power Uncertain Dispatch". Journal of Physics: Conference Series 2530, n.º 1 (1 de junho de 2023): 012016. http://dx.doi.org/10.1088/1742-6596/2530/1/012016.
Texto completo da fonteWang, Fan, Xiang Liao, Na Fang e Zhiqiang Jiang. "Optimal Scheduling of Regional Combined Heat and Power System Based on Improved MFO Algorithm". Energies 15, n.º 9 (6 de maio de 2022): 3410. http://dx.doi.org/10.3390/en15093410.
Texto completo da fonteDeepika C. "Hybrid solar-wind energy systems for smart cities: A multi-disciplinary approach". World Journal of Advanced Research and Reviews 3, n.º 1 (30 de julho de 2019): 077–86. https://doi.org/10.30574/wjarr.2019.3.1.0130.
Texto completo da fonteDjunaedi, Imam, Haifa Wahyu e Sugiyatno. "Architecture and Engineering of Hydrogen Fuel Cell Power Generation Based on Renewable Energy". Key Engineering Materials 708 (setembro de 2016): 110–17. http://dx.doi.org/10.4028/www.scientific.net/kem.708.110.
Texto completo da fonteGiaconia, Alberto, Giampaolo Caputo, Primo Di Ascenzi, Giulia Monteleone e Luca Turchetti. "Demonstration and analysis of a steam reforming process driven with solar heat using molten salts as heat transfer fluid". E3S Web of Conferences 334 (2022): 01004. http://dx.doi.org/10.1051/e3sconf/202233401004.
Texto completo da fonteTaraglio, Sergio, Stefano Chiesa, Saverio De Vito, Marco Paoloni, Gabriele Piantadosi, Andrea Zanela e Girolamo Di Francia. "Robots for the Energy Transition: A Review". Processes 12, n.º 9 (14 de setembro de 2024): 1982. http://dx.doi.org/10.3390/pr12091982.
Texto completo da fonteGu, Jianwei, Jie Gao, Changsheng Chen, Yibing Liu e Fangliang Zhu. "On the effect of pumped storage on renewable energy accommodation in multi-clean energy complementation bases". Journal of Physics: Conference Series 2932, n.º 1 (1 de janeiro de 2025): 012001. https://doi.org/10.1088/1742-6596/2932/1/012001.
Texto completo da fonteEgídio, Andriele, Giulia Dalmolin Vieira, Paulo Henrique Santos, Francini Binotto Missuiura, Lethicia Mann Machado e Bibiana Scaratti Moreira. "Thermal energy in Brazil, production and use". Nature and Conservation 14, n.º 2 (1 de abril de 2021): 111–19. http://dx.doi.org/10.6008/cbpc2318-2881.2021.002.0011.
Texto completo da fonteRashid, Amir, Muhammad Ehsan e Javid Rashid. "Design of hybrid power system for COMSATS University Islamabad using homer pro software". International Journal of Engineering, Science and Technology 15, n.º 2 (2 de junho de 2023): 14–22. http://dx.doi.org/10.4314/ijest.v15i2.2.
Texto completo da fonteRamos, Helena M., Brandon Vargas e João Roquette Saldanha. "New Integrated Energy Solution Idealization: Hybrid for Renewable Energy Network (Hy4REN)". Energies 15, n.º 11 (26 de maio de 2022): 3921. http://dx.doi.org/10.3390/en15113921.
Texto completo da fonte