Literatura científica selecionada sobre o tema "Competitive sorption and desorption"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Competitive sorption and desorption".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Competitive sorption and desorption"
Kim, J. H., W. S. Shin, Y. H. Kim, S. J. Choi, Y. W. Jeon e D. I. Song. "Sequential sorption and desorption of chlorinated phenols in organoclays". Water Science and Technology 47, n.º 9 (1 de maio de 2003): 59–64. http://dx.doi.org/10.2166/wst.2003.0492.
Texto completo da fonteZemanová, V., L. Trakal, P. Ochecová, J. Száková e D. Pavlíková. "A model experiment: competitive sorption of Cd, Cu, Pb and Zn by three different soils". Soil and Water Research 9, No. 3 (6 de agosto de 2014): 97–103. http://dx.doi.org/10.17221/50/2013-swr.
Texto completo da fonteKastelan-Macan, Marija, e Mira Petrovic. "The role of fulvic acids in phosphorus sorption and release from mineral particles". Water Science and Technology 34, n.º 7-8 (1 de outubro de 1996): 259–65. http://dx.doi.org/10.2166/wst.1996.0630.
Texto completo da fonteKim, Ji-Hoon, Won Sik Shin, Dong-Ik Song e Sang June Choi. "Sequential competitive sorption and desorption of chlorophenols in organoclay". Korean Journal of Chemical Engineering 23, n.º 1 (janeiro de 2006): 63–70. http://dx.doi.org/10.1007/bf02705693.
Texto completo da fonteMa, Rui, Tian C. Zhang, Shannon L. Bartelt-Hunt, Bill Kranz, Daniel Snow, Terry Mader, Charles Shapiro et al. "Sorption and Desorption of Testosterone to Agricultural Soils: Inhibition Effects and Competitive Sorption". Proceedings of the Water Environment Federation 2009, n.º 14 (1 de janeiro de 2009): 2624–33. http://dx.doi.org/10.2175/193864709793955050.
Texto completo da fonteZhang, Hua, e H. Magdi Selim. "COMPETITIVE SORPTION-DESORPTION KINETICS OF ARSENATE AND PHOSPHATE IN SOILS". Soil Science 173, n.º 1 (janeiro de 2008): 3–12. http://dx.doi.org/10.1097/ss.0b013e31815ce750.
Texto completo da fonteSouza, Matheus Fonseca de, Emanuelle Mercês Barros Soares, Ivo Ribeiro da Silva, Roberto Ferreira Novais e Mailson Félix de Oliveira Silva. "Competitive sorption and desorption of phosphate and citrate in clayey and sandy loam soils". Revista Brasileira de Ciência do Solo 38, n.º 4 (agosto de 2014): 1153–61. http://dx.doi.org/10.1590/s0100-06832014000400011.
Texto completo da fonteNastasovic, Aleksandra, Slobodan Jovanovic, Antonije Onjia, Zvjezdana Sandic, Ljiljana Malovic, Dragica Jakovljevic e Zorica Vukovic. "The application of macroporous copolymers in the sorption of heavy and precious metals from aqueous solutions". Chemical Industry 60, n.º 11-12 (2006): 306–10. http://dx.doi.org/10.2298/hemind0612306n.
Texto completo da fonteCampillo-Cora, Claudia, Manuel Conde-Cid, Manuel Arias-Estévez, David Fernández-Calviño e Flora Alonso-Vega. "Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments". Agronomy 10, n.º 8 (1 de agosto de 2020): 1113. http://dx.doi.org/10.3390/agronomy10081113.
Texto completo da fonteNikiforova, T. E., V. A. Kozlov e M. K. Islyaikin. "Regularities and mechanism of heavy metal cations sorption and (or) proton desorption by chitosan from aqueous solutions". Canadian Journal of Chemistry 97, n.º 8 (agosto de 2019): 621–28. http://dx.doi.org/10.1139/cjc-2018-0384.
Texto completo da fonteTeses / dissertações sobre o assunto "Competitive sorption and desorption"
Gao, Chan. "Devenir des substances per et poly-fluoroalkylées (PFAS) dans les estuaires : focus sur les interactions avec les sédiments en suspension". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0409.
Texto completo da fonteTo understand the fate of legacy and emerging PFAS at the land-sea interface, this work focused on the interactions with estuarine sediments. More precisely, we mainly studied the influence of co-existing PFAS, salinity (S) and suspended particulate matter (SPM) on the sediment-water partitioning of PFAS. First, to investigate the effect of coexisting PFAS on their adsorption and desorption, competitive adsorption and desorption experiments were conducted using single and mixed PFAS solutions at low concentrations, using kaolinite as model sorbent. Selected PFAS include eight perfluoroalkyl carboxylates (PFCAs), two perfluoroalkyl sulfonic acids (PFSAs) and one zwitterionic PFAS (8:2 fluorotelomer sulfonamide alkylbetaine (8:2 FTAB)), which were studied in three single-solute solutions and two mixture solutions. A pseudo-second-order kinetic model was used to fit in the adsorption and desorption kinetics data correctly. Their sorption and desorption on kaolinite were quite fast, with equilibrium reached within 2h. Sorption processes appeared to be influenced by the PFAS molecular structure: sorption increased and desorption decreased with increasing fluoroalkyl chain length, characterized by the increase of log Kd. Besides, PFSAs (i.e, PFHxS and PFOS) had greater sorption and weaker desorption than PFCAs (i.e, PFHpA and PFNA) with similar fluoroalkyl chain. The zwitterionic 8:2 FTAB showed stronger sorption and smaller desorption than anions (i.e., PFOS or PFNA) with a similar fluoroalkyl chain. Sorption and desorption data obtained for single and multi-solute experiments indicated that there was no significant statistical difference between such conditions. Thus, the influence of competitive adsorption and desorption was negligible at low concentrations. To study the influence of salinity and SPM on the sorption of PFAS, we used a sediment sample collected in the fluvial sector of the Garonne-Gironde system. We performed sorption kinetics and sorption isotherms tests for the same PFAS, under 35 combination of salinity and turbidity. Based on response surface methodology (RSM) modelling approach, results indicated the sorption kinetics of PFAS onto sediment can be described by pseudo-second-order model and 24h is the equilibrium time for targeted PFAS. Besides, PFAS sorption can be well fitted by linear model and Freundlich model, the linear sorption range for PFAS studied was in the range of 0.12 to 1.31 nM (equilibrium concentration). Moreover, based on RSM modelling approach, we found that Kd varied between 0.62 and 55271 L/kg and that both S and SPM were significant factors, i.e. the Kd of PFAS was positively related to S due to salting-out effect while it was negatively related to SPM concentration. Moreover, SPM had a stronger effect than salinity (S) for PFHxA and PFHpA, whereas S was the more dominant factor for most other compounds. For PFUnDA and 8:2 FTAB, S and SPM displayed nearly equivalent weights as drivers of Kd. In addition, a negative interaction between both factors was observed, i.e. if SPM increases, the effect of S on Kd is weaker. Overall, this work provides original results to model the sorption of legacy and emerging PFAS on estuarine sediments based on RSM modelling approach. It provides a new perspective to investigate the fate of PFAS at the land-sea interface
Coover, James Brigham. "Phosphorus sorption and desorption in ephemeral gully erosion". Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/17865.
Texto completo da fonteDepartment of Agronomy
Nathan O. Nelson
Phosphorus (P) is an essential nutrient in crop production, but P inputs to surface waters have resulted in impairments such as eutrophication and algae blooms. Non-point sources such as agricultural fields are a main contributor of P. Kansas, being a high agricultural dependent state, has frequent fresh water body impairments. Multiple erosion and transport processes contribute to P loss. While P loss from sheet and rill erosion has been studied extensively, P loss from ephemeral gully erosion is largely unknown. The objective of this study is to understand the effects ephemeral gullies have on the transport and transformation of P. Three fields in McPherson County with well-defined ephemeral gullies were studied. Soil samples were taken in field locations that are effected by ephemeral gullies at the 0 to 2, 2 to 5, 5 to 15, and 15 to 30 cm depths. Samples were analyzed for total P, anion exchange phosphorus (AEP) (labile P), ammonium-oxalate extractable Fe, Al, and P (Fe[subscript]ox, Al[subscript]ox, P[subscript]ox), Mehlich 3 extractable Fe, Al, Ca, and P (Fe[subscript]M3, Al[subscript]M3, Ca[subscript]M3, P[subscript]M3), equilibrium phosphorus concentration at zero net sorption (EPC[subscript]0), 1:1 soil to water pH, and texture. Soil testing showed that P quantities tend to be much higher in surface soils eroded by sheet and rill erosion and lower in subsoil soil that is eroded by ephemeral gullies. The quantity of sorptive elements such as Fe and Al, were not significantly different throughout the tested area except in areas of changing soil texture. EPC[subscript]0 testing showed it was likely that P desorbs from the surface erosion of sheet and rill and is adsorbing onto the subsoil eroded from ephemeral gullies. Sediment eroded by ephemeral gullies has a P buffering capacity greater than the sediment eroded by sheet and rill, and a small quantity of ephemeral gully subsoil will have a large effect on the dissolved P concentration of runoff. Sediment, total P loss and expected dissolved P in runoff was surveyed and modeled for two of the fields. Ephemeral gullies contributed to a majority of sediment and total P loss. The addition of ephemeral gully sediment to the erosional mix of sheet and rill sediment caused the dissolved P concentration to decrease from 0.0204 to 0.0034 mg L[superscript]-1 in one field and from 0.0136 to 0.0126 mg L[superscript]-1 in another. The results of this study show that best management practices (BMPs) such as grass waterways could cause the losses of total P to decrease as much as 2 to 12 times in fields with ephemeral gullies. However, reducing ephemeral gully erosion will likely increase dissolved P concentrations up to 600% more in runoff. Therefore, BMPs need to be combined to fully control P loss from agricultural fields.
Uygur, Veli. "Zn sorption/desorption chemistry in calcareous soils from Turkey". Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388131.
Texto completo da fonteWhitehead, Thomas William 1951. "Sorption and desorption of volatile alkyl halides in a desert soil". Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/191936.
Texto completo da fonteGarman, Stephanie Michelle. "Desorption Kinetics of Lead from Goethite: Effect of Mixing and Sorption Period". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/41240.
Texto completo da fonteMaster of Science
Mower, Matthew Bywater. "Competitive desorption of carbon tetrachloride + water from mesoporous silica particles". Online access for everyone, 2005. http://www.dissertations.wsu.edu/Thesis/Summer2005/m%5Fmower%5F081205.pdf.
Texto completo da fonteMikutta, Christian. "Controls of the phosphate sorption and desorption kinetics of organic matter goethite associations". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979599083.
Texto completo da fonteShi, Zhenqing. "Kinetics of trace metals sorption on and desorption from soils developing predictive models /". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 3.09 Mb., 309 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3205426.
Texto completo da fonteDavis, James Hal 1956, e James Hal 1956 Davis. "Sorption and desorption of benzene and para-xylene on an unsaturated desert soil". Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/291366.
Texto completo da fonteWang, Guohui. "Sorption, desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials". kostenfrei, 2008. http://d-nb.info/988782308/34.
Texto completo da fonteLivros sobre o assunto "Competitive sorption and desorption"
Selim, Hussein Magd Eldin. Sorption-desorption and transport of TNT and RDX in soils. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1994.
Encontre o texto completo da fonteTicknor, K. V. Sorption/desorption experiments on Chalk River sand and potential buffer materials. Pinawa, Man: Whiteshell Laboratories, 1997.
Encontre o texto completo da fonteGrathwohl, Peter. Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5683-1.
Texto completo da fonteLlopis, José L. Survey of laboratory studies relating to the sorption/desorption of contaminants on selected well casing materials. [Washington, D.C.]: U.S. Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, 1992.
Encontre o texto completo da fonteLlopis, José L. Survey of laboratory studies relating to the sorption/desorption of contaminants on selected well casing materials. [Washington, D.C.]: U.S. Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, 1992.
Encontre o texto completo da fonteLlopis, José L. Survey of laboratory studies relating to the sorption/desorption of contaminants on selected well casing materials. [Washington, D.C.]: U.S. Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, 1992.
Encontre o texto completo da fonteLaboratory, Occupational Medicine and Hygiene. Chlorinated hydrocarbon solvent vapours in air: Laboratory method using pumped charcoal sorption tubes, solvent desorption and gas chromatography. Bootle: Health and Safety Executive, 1990.
Encontre o texto completo da fonteMmochi, Aviti J. Degradation and sorption/desorption of propanil in soils from Mahonda-Makoba drainage basin and Cheju rainfed rice field, Zanzibar, Tanzania. [Zanzibar]: WIOMSA, 2003.
Encontre o texto completo da fonteCanada, Atomic Energy of. Sorption/desorption studies of selenium on fracture-filling minerals under aerobic and anaerobic conditions / by K.V. Ticknor, D.R. Harris, T.T. Vandergraaf. S.l: s.n, 1988.
Encontre o texto completo da fontePapelis, Charalambos. Evaluation of cesium, strontium, and lead sorption, desorption, and diffusion in volcanic tuffs from Frenchman Flat, Nevada Test Site: Macroscopic and spectroscopic investigations. Las Vegas, Nev: Desert Research Institute, 2003.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Competitive sorption and desorption"
Wutz, Max, Hermann Adam e Wilhelm Walcher. "Sorption und Desorption". In Theorie und Praxis der Vakuumtechnik, 62–75. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-322-87814-4_3.
Texto completo da fonteWutz, Max, Hermann Adam e Wilhelm Walcher. "Sorption und Desorption". In Handbuch Vakuumtechnik, 62–75. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-99421-9_3.
Texto completo da fonteWutz, Max, Hermann Adam, Wilhelm Walcher e Karl Jousten. "Sorption und Desorption". In Handbuch Vakuumtechnik, 62–75. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-99947-4_3.
Texto completo da fonteWutz, Max, Hermann Adam e Wilhelm Walcher. "Sorption und Desorption". In Theorie und Praxis der Vakuumtechnik, 59–71. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-322-83543-7_3.
Texto completo da fonteChorover, Jon, e Mark L. Brusseau. "Kinetics of Sorption—Desorption". In Kinetics of Water-Rock Interaction, 109–49. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73563-4_4.
Texto completo da fonteGupta, Raj K., I. P. Abrol, Charles W. Finkl, M. B. Kirkham, Marta Camps Arbestain, Felipe Macías, Ward Chesworth et al. "Solute Sorption‐Desorption Kinetics". In Encyclopedia of Soil Science, 739–44. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_569.
Texto completo da fonteBachmaf, Samer, Britta Planer-Friedrich e Broder J. Merkel. "Uranium sorption and desorption behavior on bentonite". In Uranium, Mining and Hydrogeology, 515–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87746-2_63.
Texto completo da fonteNair, Vimala D., e K. Ramesh Reddy. "Phosphorus Sorption and Desorption in Wetland Soils". In Methods in Biogeochemistry of Wetlands, 667–81. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssabookser10.c34.
Texto completo da fonteClapp, C. E., M. H. B. Hayes e U. Mingelgrin. "Measurements of Sorption-Desorption and Isotherm Analyses". In Humic Substances and Chemical Contaminants, 205–40. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/2001.humicsubstances.c13.
Texto completo da fonteElbana, Tamer A., Wenguang Sun, Joshua Padilla e H. Magdi Selim. "Kinetics of Vanadium Sorption/Desorption in Soils". In Vanadium in Soils and Plants, 49–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003173274-3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Competitive sorption and desorption"
Krishnadoss, Rajalakshmi, e Thomas A. Adams. "Integration of a Chemical Heat Pump with a Post- combustion Carbon Capture Sorption Unit". In Foundations of Computer-Aided Process Design, 484–89. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.128149.
Texto completo da fonteWolf, Jeremy, Sepideh Maaref, Benjamin Tutolo e Apostolos Kantzas. "An Experimental Study of Single Component Adsorption/Desorption Isotherms". In SPE Canadian Energy Technology Conference. SPE, 2022. http://dx.doi.org/10.2118/208920-ms.
Texto completo da fonteSafarov, Jasur, Sunil Verma, Shakhnoza Sultanova, Abhijit Tarawade e Azamat Usenov. "SORPTION AND DESORPTION OF RAW MATERIALS". In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.553s.
Texto completo da fonteMa, Rui, e Tian C. Zhang. "Sorption and Desorption of Testosterone in Agricultural Soils". In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)268.
Texto completo da fonteLuna-Flores, Mario, Mariana Gisela Peña-Juarez, Angélica Mara Bello-Ramirez, Javier Telis-Romero e Guadalupe Luna-Solano. "Moisture sorption isotherms and isosteric heat sorption of habanero pepper (Capsicum chínense) dehydrated powder". In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7637.
Texto completo da fonte"Mathematical modeling of sorption and desorption dynamics in adsorption systems". In Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.051.
Texto completo da fonteHosseini, M., J. B. Colliat e N. Burlion. "Numerical Simulation of Sorption-Desorption Isotherme for Cement-Based Materials". In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.143.
Texto completo da fonteBaishibekov, A., D. Purwaningsih, G. Toilanbay e Khaldun M. Al Azzam. "Comparative Analysis of Sorbents on Chromate Ion (VI) Sorption and Desorption: Influence of Composition and pH from Ilmenite Processing Solutions". In Challenges of Science, 117–22. Institute of Metallurgy and Ore Beneficiation JSC, Satbayev University, 2024. http://dx.doi.org/10.31643/2024.17.
Texto completo da fonteYu, Hai-bin, Ye-yao Wang e Cun-yi Song. "Sorption and Desorption Behaviors of Chlorobenzene on the Sediment of Songhua River". In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5517313.
Texto completo da fonteFellers, Christer, e Ake Bränge. "The Impact of Water Sorption on the Compression Strength of Paper". In Papermaking Raw Materials, editado por V. Punton. Fundamental Research Committee (FRC), Manchester, 1985. http://dx.doi.org/10.15376/frc.1985.2.529.
Texto completo da fonteRelatórios de organizações sobre o assunto "Competitive sorption and desorption"
Gordon Borwn Jr., Jeffrey Catalano, David Singer e John Zachara. Characterization of U9VI) Sorption-Desorption Processes and Model Upscaling. Office of Scientific and Technical Information (OSTI), maio de 2007. http://dx.doi.org/10.2172/911851.
Texto completo da fonteKung, K. S., J. Chan, P. Longmire e M. Fowler. Cesium sorption and desorption on selected Los Alamos soils. Office of Scientific and Technical Information (OSTI), agosto de 1995. http://dx.doi.org/10.2172/94679.
Texto completo da fontePhil WInston. Single Component Sorption-Desorption Test Experimental Design Approach Discussions. Office of Scientific and Technical Information (OSTI), setembro de 2011. http://dx.doi.org/10.2172/1027920.
Texto completo da fonteBai, Jing, Wenming Dong e William P. Ball. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling. Office of Scientific and Technical Information (OSTI), outubro de 2006. http://dx.doi.org/10.2172/894270.
Texto completo da fonteWilliam Tuminello, Maciej Radosz e Youqing Shen. Novel Sorption/Desorption Process for Carbon Dioxide Capture (Feasibility Study). Office of Scientific and Technical Information (OSTI), novembro de 2008. http://dx.doi.org/10.2172/993828.
Texto completo da fonteZachara, John M. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling. Office of Scientific and Technical Information (OSTI), junho de 2003. http://dx.doi.org/10.2172/835467.
Texto completo da fonteBrown, Gordon E. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling. Office of Scientific and Technical Information (OSTI), junho de 2003. http://dx.doi.org/10.2172/835468.
Texto completo da fonteZachara, John M., Brown, Gordon, E., Peter C. Lichtner e William Ball. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling. Office of Scientific and Technical Information (OSTI), junho de 2004. http://dx.doi.org/10.2172/839157.
Texto completo da fonteBoyd, S., e W. Guerin. Influence of sorption/desorption processes on the bioavailability of organic contaminants. Office of Scientific and Technical Information (OSTI), janeiro de 1990. http://dx.doi.org/10.2172/7169461.
Texto completo da fonteTrautschold, Olivia Carol. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam. Office of Scientific and Technical Information (OSTI), setembro de 2016. http://dx.doi.org/10.2172/1321702.
Texto completo da fonte