Artigos de revistas sobre o tema "Combined exergy and pinch analysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Combined exergy and pinch analysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sorin, M. "Combined Exergy and Pinch Approach to Process Analysis". Computers & Chemical Engineering 21, n.º 1-2 (1997): S23—S28. http://dx.doi.org/10.1016/s0098-1354(97)00020-3.
Texto completo da fonteSorin, M., e J. Paris. "Combined exergy and pinch approach to process analysis". Computers & Chemical Engineering 21 (maio de 1997): S23—S28. http://dx.doi.org/10.1016/s0098-1354(97)87473-x.
Texto completo da fonteDhole, V. R., e J. P. Zheng. "Applying Combined Pinch and Exergy Analysis to Closed-Cycle Gas Turbine System Design". Journal of Engineering for Gas Turbines and Power 117, n.º 1 (1 de janeiro de 1995): 47–52. http://dx.doi.org/10.1115/1.2812780.
Texto completo da fonteRiadi, Indra, Johnner Sitompul e Hyung Woo Lee. "Pinch-Exergy Approach to Enhance Sulphitation Process Efficiency in Sugar Manufacturing". CHEESA: Chemical Engineering Research Articles 7, n.º 1 (22 de abril de 2024): 1. http://dx.doi.org/10.25273/cheesa.v7i1.17831.1-14.
Texto completo da fonteSharew, Shumet Sendek, Alessandro Di Pretoro, Abubeker Yimam, Stéphane Negny e Ludovic Montastruc. "Combining Exergy and Pinch Analysis for the Operating Mode Optimization of a Steam Turbine Cogeneration Plant in Wonji-Shoa, Ethiopia". Entropy 26, n.º 6 (27 de maio de 2024): 453. http://dx.doi.org/10.3390/e26060453.
Texto completo da fonteYushkova, E. A., e V. A. Lebedev. "Exergy analysis of the boiler using the pinch method". Power engineering: research, equipment, technology 21, n.º 4 (9 de dezembro de 2019): 58–65. http://dx.doi.org/10.30724/1998-9903-2019-21-4-58-65.
Texto completo da fonteArriola-Medellín, Alejandro, Emilio Manzanares-Papayanopoulos e César Romo-Millares. "Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis". Energy 72 (agosto de 2014): 643–51. http://dx.doi.org/10.1016/j.energy.2014.05.090.
Texto completo da fonteHamsani, Muhammad Nurheilmi, Timothy Gordon Walmsley, Peng Yen Liew e Sharifah Rafidah Wan Alwi. "Combined Pinch and exergy numerical analysis for low temperature heat exchanger network". Energy 153 (junho de 2018): 100–112. http://dx.doi.org/10.1016/j.energy.2018.04.023.
Texto completo da fonteOchoa, Guillermo Valencia, Carlos Acevedo Peñaloza e Jhan Piero Rojas. "Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids". Applied Sciences 9, n.º 21 (25 de outubro de 2019): 4526. http://dx.doi.org/10.3390/app9214526.
Texto completo da fonteRiady, M. I., D. Santoso e M. D. Bustan. "Thermodynamics Performance Evaluation in Combined Cycle Power Plant by Using Combined Pinch and Exergy Analysis". Journal of Physics: Conference Series 1198, n.º 4 (abril de 2019): 042006. http://dx.doi.org/10.1088/1742-6596/1198/4/042006.
Texto completo da fonteGonçalves, L. P., e F. R. P. Arrieta. "AN EXERGY COST ANALYSIS OF A COGENERATION PLANT". Revista de Engenharia Térmica 9, n.º 1-2 (31 de dezembro de 2010): 28. http://dx.doi.org/10.5380/reterm.v9i1-2.61927.
Texto completo da fonteKhoshgoftar Manesh, M. H., e M. A. Rosen. "Combined Cycle and Steam Gas-Fired Power Plant Analysis through Exergoeconomic and Extended Combined Pinch and Exergy Methods". Journal of Energy Engineering 144, n.º 2 (abril de 2018): 04018010. http://dx.doi.org/10.1061/(asce)ey.1943-7897.0000506.
Texto completo da fonteBett, Alvin Kiprono, e Saeid Jalilinasrabady. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis". Energies 14, n.º 20 (13 de outubro de 2021): 6579. http://dx.doi.org/10.3390/en14206579.
Texto completo da fonteBett, Alvin Kiprono, e Saeid Jalilinasrabady. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis". Energies 14, n.º 20 (13 de outubro de 2021): 6579. http://dx.doi.org/10.3390/en14206579.
Texto completo da fonteJavanshir, Nima, S. M. Seyed Mahmoudi e Marc A. Rosen. "Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles". Sustainability 11, n.º 12 (18 de junho de 2019): 3374. http://dx.doi.org/10.3390/su11123374.
Texto completo da fonteRen, Jie, Chen Xu, Zuoqin Qian, Weilong Huang e Baolin Wang. "Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle". Entropy 26, n.º 6 (12 de junho de 2024): 511. http://dx.doi.org/10.3390/e26060511.
Texto completo da fonteGhannadzadeh, Ali, e Majid Sadeqzadeh. "Combined pinch and exergy analysis of an ethylene oxide production process to boost energy efficiency toward environmental sustainability". Clean Technologies and Environmental Policy 19, n.º 8 (31 de julho de 2017): 2145–60. http://dx.doi.org/10.1007/s10098-017-1402-5.
Texto completo da fonteMehdizadeh-Fard, Mohsen, Fathollah Pourfayaz, Mehdi Mehrpooya e Alibakhsh Kasaeian. "Improving energy efficiency in a complex natural gas refinery using combined pinch and advanced exergy analyses". Applied Thermal Engineering 137 (junho de 2018): 341–55. http://dx.doi.org/10.1016/j.applthermaleng.2018.03.054.
Texto completo da fonteEl Haj Assad, Mamdouh, Yashar Aryanfar, Amirreza Javaherian, Ali Khosravi, Karim Aghaei, Siamak Hosseinzadeh, Juan Pabon e SMS Mahmoudi. "Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant". International Journal of Low-Carbon Technologies 16, n.º 4 (1 de novembro de 2021): 1504–18. http://dx.doi.org/10.1093/ijlct/ctab076.
Texto completo da fonteSilva Ortiz, Maciel Filho e Posada. "Mass and Heat Integration in Ethanol Production Mills for Enhanced Process Efficiency and Exergy-Based Renewability Performance". Processes 7, n.º 10 (27 de setembro de 2019): 670. http://dx.doi.org/10.3390/pr7100670.
Texto completo da fonteSenoussaoui, Noha-Lys, Raphaële Thery Hetreux e Gilles Hetreux. "Method combining exergy and pinch analysis for the optimisation of a methanol production process based on natural gas and recovered CO2". MATEC Web of Conferences 379 (2023): 01004. http://dx.doi.org/10.1051/matecconf/202337901004.
Texto completo da fonteHan, Bing-Chuan, Yong-Dong Chen, Gai-Ge Yu, Xiao-Hong Wu e Tao-Tao Zhou. "Completely Recuperative Supercritical CO2 Recompression Brayton/Absorption Combined Power/Cooling Cycle: Performance Assessment and Optimization". International Journal of Photoenergy 2022 (20 de maio de 2022): 1–22. http://dx.doi.org/10.1155/2022/3869867.
Texto completo da fonteZhao, Ying-jie, Yu-ke Zhang, Yang Cui, Yuan-yuan Duan, Yi Huang, Guo-qiang Wei, Usama Mohamed, Li-juan Shi, Qun Yi e William Nimmo. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture". Energy 238 (janeiro de 2022): 121720. http://dx.doi.org/10.1016/j.energy.2021.121720.
Texto completo da fonteLebedev, Vladimir Aleksandrovich, e Ekaterina Aleksandrovn Yushkova. "Mathematical Model for Optimization of Heat Exchange Systems of a Refinery". E3S Web of Conferences 161 (2020): 01001. http://dx.doi.org/10.1051/e3sconf/202016101001.
Texto completo da fonteLebedev, Vladimir, e Ekaterina Yushkova. "Mathematical model for optimization of heat exchange systems". E3S Web of Conferences 164 (2020): 02011. http://dx.doi.org/10.1051/e3sconf/202016402011.
Texto completo da fonteLebedev, Vladimir, Ekaterina Yushkova e Ivan Churkin. "Exergy pinch analysis of a furnace in a primary oil refining unit". E3S Web of Conferences 124 (2019): 05088. http://dx.doi.org/10.1051/e3sconf/201912405088.
Texto completo da fonteYushkova, Ekaterina, Vladimir Lebedev, Pavel Yakovlev e Maria Akmanova. "Exergy pinch analysis structural optimization". Energy Safety and Energy Economy 5 (novembro de 2020): 37–41. http://dx.doi.org/10.18635/2071-2219-2020-5-37-41.
Texto completo da fonteBou Malham, Zoughaib, Tinoco e Schuhler. "Hybrid Optimization Methodology (Exergy/Pinch) and Application on a Simple Process". Energies 12, n.º 17 (28 de agosto de 2019): 3324. http://dx.doi.org/10.3390/en12173324.
Texto completo da fonteЛебедев, Владимир Александрович, e Екатерина Александровна Юшкова. "ЭКСЕРГЕТИЧЕСКИЙ ПИНЧ-АНАЛИЗ ВСЕХ ЭЛЕМЕНТОВ КОТЕЛЬНОГО АГРЕГАТА И КОТЕЛЬНОГО АГРЕГАТА В ЦЕЛОМ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 331, n.º 8 (24 de agosto de 2020): 92–98. http://dx.doi.org/10.18799/24131830/2020/8/2771.
Texto completo da fonteSorin, M., e J. Paris. "Integrated exergy load distribution method and pinch analysis". Computers & Chemical Engineering 23, n.º 4-5 (maio de 1999): 497–507. http://dx.doi.org/10.1016/s0098-1354(98)00288-9.
Texto completo da fonteFeng, X., e X. X. Zhu. "Combining pinch and exergy analysis for process modifications". Applied Thermal Engineering 17, n.º 3 (março de 1997): 249–61. http://dx.doi.org/10.1016/s1359-4311(96)00035-x.
Texto completo da fonteWalmsley, Timothy Gordon, Benjamin James Lincoln, Roger Padullés e Donald John Cleland. "Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques". Energies 17, n.º 12 (8 de junho de 2024): 2838. http://dx.doi.org/10.3390/en17122838.
Texto completo da fonteRadgen, Peter, e Klaus Lucas. "Energy system analysis is fertilizer complex - pinch analysis vs. Exergy analysis". Chemical Engineering & Technology 19, n.º 2 (abril de 1996): 192–95. http://dx.doi.org/10.1002/ceat.270190213.
Texto completo da fontePaudel, Ekaraj, Ruud G. M. Van der Sman, Nieke Westerik, Ashutosh Ashutosh, Belinda P. C. Dewi e Remko M. Boom. "More efficient mushroom canning through pinch and exergy analysis". Journal of Food Engineering 195 (fevereiro de 2017): 105–13. http://dx.doi.org/10.1016/j.jfoodeng.2016.09.021.
Texto completo da fonteYushkova, E. A., e V. A. Lebedev. "Exergy pinch analysis of the primary oil distillation unit". Journal of Physics: Conference Series 1399 (dezembro de 2019): 044072. http://dx.doi.org/10.1088/1742-6596/1399/4/044072.
Texto completo da fonteGoodarzvand-Chegini, Fatemeh, e Esmaeil GhasemiKafrudi. "Application of exergy analysis to improve the heat integration efficiency in a hydrocracking process". Energy & Environment 28, n.º 5-6 (29 de junho de 2017): 564–79. http://dx.doi.org/10.1177/0958305x17715767.
Texto completo da fonteZheng, Yong. "Optimization of Chenzhuang Combined Station through Pinch Analysis". Journal of Physics: Conference Series 2442, n.º 1 (1 de fevereiro de 2023): 012036. http://dx.doi.org/10.1088/1742-6596/2442/1/012036.
Texto completo da fonteMa, Wenjiao, Shuguang Xiang e Li Xia. "Energy-Saving Analysis of Epichlorohydrin Plant Based on Entransy". Processes 11, n.º 3 (20 de março de 2023): 954. http://dx.doi.org/10.3390/pr11030954.
Texto completo da fonteAli, Emad, e Mohamed Hadj-Kali. "Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration". Polish Journal of Chemical Technology 20, n.º 1 (1 de março de 2018): 35–46. http://dx.doi.org/10.2478/pjct-2018-0006.
Texto completo da fonteMoharamian, Anahita, Saeed Soltani, Faramarz Ranjbar, Mortaza Yari e Marc A. Rosen. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit". Energy & Environment 28, n.º 7 (4 de agosto de 2017): 725–43. http://dx.doi.org/10.1177/0958305x17724211.
Texto completo da fonteSun, Wenxu, e Zhan Liu. "Parametric Assessment on the Advanced Exergy Performance of a CO2 Energy Storage Based Trigeneration System". Applied Sciences 10, n.º 23 (24 de novembro de 2020): 8341. http://dx.doi.org/10.3390/app10238341.
Texto completo da fonteSun, Enhui, Han Hu, Hangning Li, Chao Liu e Jinliang Xu. "How to Construct a Combined S-CO2 Cycle for Coal Fired Power Plant?" Entropy 21, n.º 1 (27 de dezembro de 2018): 19. http://dx.doi.org/10.3390/e21010019.
Texto completo da fonteWANG, C., C. GUANG, Z. S. ZHANG e J. GAO. "DESIGN AND OPTIMIZATION OF HEAT EXCHANGE NETWORK AND EXERGY ANALYSIS FOR METHANATION PROCESS OF COAL-GAS". Latin American Applied Research - An international journal 49, n.º 1 (31 de janeiro de 2019): 47–54. http://dx.doi.org/10.52292/j.laar.2019.284.
Texto completo da fonteLinnhoff, B. "Pinch Technology for the Synthesis of Optimal Heat and Power Systems". Journal of Energy Resources Technology 111, n.º 3 (1 de setembro de 1989): 137–47. http://dx.doi.org/10.1115/1.3231415.
Texto completo da fonteBarari, Bamdad, Abbasian Shirazi, Mohsen Keshavarzi e Iman Rostamsowlat. "Numerical analysis and field study of time dependent exergy-energy of a gas-steam combined cycle". Journal of the Serbian Chemical Society 77, n.º 7 (2012): 945–57. http://dx.doi.org/10.2298/jsc110708014b.
Texto completo da fonteAbutorabi, Hossein, e Ehsan Kianpour. "Modeling, exergy analysis and optimization of cement plant industry". Journal of Mechanical and Energy Engineering 6, n.º 1 (1 de julho de 2022): 55–66. http://dx.doi.org/10.30464/jmee.2022.6.1.55.
Texto completo da fonteFacchini, Bruno, Daniele Fiaschi e Giampaolo Manfrida. "Exergy Analysis of Combined Cycles Using Latest Generation Gas Turbines". Journal of Engineering for Gas Turbines and Power 122, n.º 2 (3 de janeiro de 2000): 233–38. http://dx.doi.org/10.1115/1.483200.
Texto completo da fonteBandyopadhyay, Rajarshi, Ole Frej Alkilde e Sreedevi Upadhyayula. "Applying pinch and exergy analysis for energy efficient design of diesel hydrotreating unit". Journal of Cleaner Production 232 (setembro de 2019): 337–49. http://dx.doi.org/10.1016/j.jclepro.2019.05.277.
Texto completo da fonteXia, Xiao Xia, Nai Jun Zhou e Zhi Qi Wang. "Exergy Analysis of Energy Consumption for Central Air Conditioning System". Applied Mechanics and Materials 628 (setembro de 2014): 332–37. http://dx.doi.org/10.4028/www.scientific.net/amm.628.332.
Texto completo da fonteGalimova, L. V., e D. Z. Bairamov. "Thermodynamic analysis of combined cycle plant operation as part of an energy-saving system based on an absorption bromide-lithium refrigerating machine". Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering 4, n.º 4 (2020): 57–65. http://dx.doi.org/10.25206/2588-0373-2020-4-4-57-65.
Texto completo da fonte