Siga este link para ver outros tipos de publicações sobre o tema: Combinatorics of cores.

Artigos de revistas sobre o tema "Combinatorics of cores"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Combinatorics of cores".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Aukerman, David, Ben Kane e Lawrence Sze. "On simultaneous s-cores/t-cores". Discrete Mathematics 309, n.º 9 (maio de 2009): 2712–20. http://dx.doi.org/10.1016/j.disc.2008.06.024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Godsil, Chris, e Gordon F. Royle. "Cores of Geometric Graphs". Annals of Combinatorics 15, n.º 2 (15 de maio de 2011): 267–76. http://dx.doi.org/10.1007/s00026-011-0094-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mančinska, Laura, Irene Pivotto, David E. Roberson e Gordon F. Royle. "Cores of cubelike graphs". European Journal of Combinatorics 87 (junho de 2020): 103092. http://dx.doi.org/10.1016/j.ejc.2020.103092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Han, Guo-Niu, e Ken Ono. "Hook Lengths and 3-Cores". Annals of Combinatorics 15, n.º 2 (15 de maio de 2011): 305–12. http://dx.doi.org/10.1007/s00026-011-0096-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Sato, Cristiane M. "On the robustness of randomk-cores". European Journal of Combinatorics 41 (outubro de 2014): 163–82. http://dx.doi.org/10.1016/j.ejc.2014.03.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Malen, Greg. "Homomorphism complexes andk-cores". Discrete Mathematics 341, n.º 9 (setembro de 2018): 2567–74. http://dx.doi.org/10.1016/j.disc.2018.06.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cho, Hyunsoo, e Kyounghwan Hong. "Corners of self-conjugate (s,s + 1)-cores and (s‾,s+1‾)-cores". Discrete Mathematics 345, n.º 9 (setembro de 2022): 112949. http://dx.doi.org/10.1016/j.disc.2022.112949.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Baruah, Nayandeep Deka, e Kallol Nath. "Infinite families of arithmetic identities for self-conjugate 5-cores and 7-cores". Discrete Mathematics 321 (abril de 2014): 57–67. http://dx.doi.org/10.1016/j.disc.2013.12.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Thiel, Marko, e Nathan Williams. "Strange expectations and simultaneous cores". Journal of Algebraic Combinatorics 46, n.º 1 (10 de abril de 2017): 219–61. http://dx.doi.org/10.1007/s10801-017-0754-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kotsireas, Ilias S., Christos Koukouvinos e Jennifer Seberry. "Hadamard ideals and Hadamard matrices with two circulant cores". European Journal of Combinatorics 27, n.º 5 (julho de 2006): 658–68. http://dx.doi.org/10.1016/j.ejc.2005.03.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Haglund, Jim, Ken Ono e Lawrence Sze. "Rook Theory andt-Cores". Journal of Combinatorial Theory, Series A 84, n.º 1 (outubro de 1998): 9–37. http://dx.doi.org/10.1006/jcta.1998.2874.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Marietti, Mario, e Damiano Testa. "Cores of Simplicial Complexes". Discrete & Computational Geometry 40, n.º 3 (15 de maio de 2008): 444–68. http://dx.doi.org/10.1007/s00454-008-9081-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Paramonov, Kirill. "Cores with distinct parts and bigraded Fibonacci numbers". Discrete Mathematics 341, n.º 4 (abril de 2018): 875–88. http://dx.doi.org/10.1016/j.disc.2017.12.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Boros, E., e V. Gurvich. "Perfect graphs, kernels, and cores of cooperative games". Discrete Mathematics 306, n.º 19-20 (outubro de 2006): 2336–54. http://dx.doi.org/10.1016/j.disc.2005.12.031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Solymosi, David, e Jozsef Solymosi. "Small cores in 3-uniform hypergraphs". Journal of Combinatorial Theory, Series B 122 (janeiro de 2017): 897–910. http://dx.doi.org/10.1016/j.jctb.2016.11.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Bowditch, Brian. "An upper bound for injectivity radii in convex cores". Groups, Geometry, and Dynamics 7, n.º 1 (2013): 109–26. http://dx.doi.org/10.4171/ggd/178.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Berkovich, Alexander, e Hamza Yesilyurt. "New identities for 7-cores with prescribed BG-rank". Discrete Mathematics 308, n.º 22 (novembro de 2008): 5246–59. http://dx.doi.org/10.1016/j.disc.2007.09.044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Butkovič, Peter, Hans Schneider, Sergeĭ Sergeev e Bit-Shun Tam. "Two cores of a nonnegative matrix". Linear Algebra and its Applications 439, n.º 7 (outubro de 2013): 1929–54. http://dx.doi.org/10.1016/j.laa.2013.05.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Ono, Ken, e Wissam Raji. "Class numbers and self-conjugate 7-cores". Journal of Combinatorial Theory, Series A 180 (maio de 2021): 105427. http://dx.doi.org/10.1016/j.jcta.2021.105427.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Olsson, Jørn B. "A theorem on the cores of partitions". Journal of Combinatorial Theory, Series A 116, n.º 3 (abril de 2009): 733–40. http://dx.doi.org/10.1016/j.jcta.2008.08.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bauslaugh, Bruce L. "Cores and Compactness of Infinite Directed Graphs". Journal of Combinatorial Theory, Series B 68, n.º 2 (novembro de 1996): 255–76. http://dx.doi.org/10.1006/jctb.1996.0068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Liu, Juan, Hong Yang, Xindong Zhang e Hong-Jian Lai. "Symmetric cores and extremal size bound for supereulerian semicomplete bipartite digraphs". Discrete Mathematics 347, n.º 4 (abril de 2024): 113867. http://dx.doi.org/10.1016/j.disc.2023.113867.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Anderson, Jaclyn. "On the existence of rook equivalent t-cores". Journal of Combinatorial Theory, Series A 106, n.º 2 (maio de 2004): 221–36. http://dx.doi.org/10.1016/j.jcta.2004.01.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Lulov, Nathan, e Boris Pittel. "On the Random Young Diagrams and Their Cores". Journal of Combinatorial Theory, Series A 86, n.º 2 (maio de 1999): 245–80. http://dx.doi.org/10.1006/jcta.1998.2939.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Osoba, Benard, e Temitope Gbolahan Jaiyeola. "Algebraic connections between right and middle Bol loops and their cores". Quasigroups and Related Systems 30, n.º 1(47) (maio de 2022): 149–60. http://dx.doi.org/10.56415/qrs.v30.13.

Texto completo da fonte
Resumo:
To every right or left Bol loop corresponds a middle Bol loop. In this paper, the cores of right Bol loops (RBL) and its corresponding middle Bol loops (MBL) were studied. Their algebraic connections were considered. It was shown that the core of a RBL is elastic and right idempotent. The core of a RBL was found to be alternative (or left idempotent) if and only if its corresponding MBL is right symmetric. If a MBL is right (left) symmetric, then, the core of its corresponding RBL is a medial (semimedial). The core of a middle Bol loop has the left inverse property (automorphic inverse property, right idempotence resp.) if and only if its corresponding RBL has the super anti-automorphic inverse property (automorphic inverse property, exponent 2 resp.). If a RBL is of exponent 2, then, the core of its corresponding MBL is left idempotent. If a RBL is of exponent 2 then: the core of a MBL has the left alternative property (right alternative property) if and only if its corresponding RBL has the cross inverse property (middle symmetry). Some other similar results were derived for RBL of exponent 3.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Tarau, Paul. "Deriving Efficient Sequential and Parallel Generators for Closed Simply-Typed Lambda Terms and Normal Forms". Fundamenta Informaticae 177, n.º 3-4 (10 de dezembro de 2020): 385–415. http://dx.doi.org/10.3233/fi-2020-1994.

Texto completo da fonte
Resumo:
Contrary to several other families of lambda terms, no closed formula or generating function is known and none of the sophisticated techniques devised in analytic combinatorics can currently help with counting or generating the set of simply-typed closed lambda terms of a given size. Moreover, their asymptotic scarcity among the set of closed lambda terms makes counting them via brute force generation and type inference quickly intractable, with previous published work showing counts for them only up to size 10. By taking advantage of the synergy between logic variables, unification with occurs check and efficient backtracking in today’s Prolog systems, we climb 4 orders of magnitude above previously known counts by deriving progressively faster sequential Prolog programs that generate and/or count the set of closed simply-typed lambda terms of sizes up to 14. Similar counts for closed simply-typed normal forms are also derived up to size 14. Finally, we devise several parallel execution algorithms, based on generating code to be uniformly distributed among the available cores, that push the counts for simply typed terms up to size 15 and simply typed normal forms up to size 16. As a remarkable feature, our parallel algorithms are linearly scalable with the number of available cores.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Bonato, Anthony, e Paweł Prałat. "The good, the bad, and the great: Homomorphisms and cores of random graphs". Discrete Mathematics 309, n.º 18 (setembro de 2009): 5535–39. http://dx.doi.org/10.1016/j.disc.2008.03.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Cho, Hyunsoo, JiSun Huh, Hayan Nam e Jaebum Sohn. "Results on bar-core partitions, core shifted Young diagrams, and doubled distinct cores". Discrete Mathematics 346, n.º 7 (julho de 2023): 113387. http://dx.doi.org/10.1016/j.disc.2023.113387.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

DeBiasio, Louis, András Gyárfás e Gábor N. Sárközy. "Ramsey numbers of path-matchings, covering designs, and 1-cores". Journal of Combinatorial Theory, Series B 146 (janeiro de 2021): 124–40. http://dx.doi.org/10.1016/j.jctb.2020.09.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

González-Torres, Raúl E. "A geometric study of cores of idempotent stochastic matrices". Linear Algebra and its Applications 527 (agosto de 2017): 87–127. http://dx.doi.org/10.1016/j.laa.2017.03.032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Mardiningsih, Saib Suwilo e Ihda Hasbiyati. "Existence of Polynomial Combinatorics Graph Solution". Journal of Research in Mathematics Trends and Technology 2, n.º 1 (24 de fevereiro de 2020): 7–13. http://dx.doi.org/10.32734/jormtt.v2i1.3755.

Texto completo da fonte
Resumo:
The Polynomial Combinatorics comes from optimization problem combinatorial in form the nonlinear and integer programming. This paper present a condition such that the polynomial combinatorics has solution. Existence of optimum value will be found by restriction of decision variable and properties of feasible solution set or polyhedra.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Damaschke, Peter. "Multiple hypernode hitting sets and smallest two-cores with targets". Journal of Combinatorial Optimization 18, n.º 3 (29 de maio de 2009): 294–306. http://dx.doi.org/10.1007/s10878-009-9234-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lapointe, Luc, e Jennifer Morse. "Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions". Journal of Combinatorial Theory, Series A 112, n.º 1 (outubro de 2005): 44–81. http://dx.doi.org/10.1016/j.jcta.2005.01.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Giusti, Chad, e Vladimir Itskov. "A No-Go Theorem for One-Layer Feedforward Networks". Neural Computation 26, n.º 11 (novembro de 2014): 2527–40. http://dx.doi.org/10.1162/neco_a_00657.

Texto completo da fonte
Resumo:
It is often hypothesized that a crucial role for recurrent connections in the brain is to constrain the set of possible response patterns, thereby shaping the neural code. This implies the existence of neural codes that cannot arise solely from feedforward processing. We set out to find such codes in the context of one-layer feedforward networks and identified a large class of combinatorial codes that indeed cannot be shaped by the feedforward architecture alone. However, these codes are difficult to distinguish from codes that share the same sets of maximal activity patterns in the presence of subtractive noise. When we coarsened the notion of combinatorial neural code to keep track of only maximal patterns, we found the surprising result that all such codes can in fact be realized by one-layer feedforward networks. This suggests that recurrent or many-layer feedforward architectures are not necessary for shaping the (coarse) combinatorial features of neural codes. In particular, it is not possible to infer a computational role for recurrent connections from the combinatorics of neural response patterns alone. Our proofs use mathematical tools from classical combinatorial topology, such as the nerve lemma and the existence of an inverse nerve. An unexpected corollary of our main result is that any prescribed (finite) homotopy type can be realized by a subset of the form [Formula: see text], where [Formula: see text] is a polyhedron.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Da Rocha, V. C. "Combinatorial codes". Electronics Letters 21, n.º 21 (1985): 949. http://dx.doi.org/10.1049/el:19850670.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Wallace, Mark, e Neil Yorke-Smith. "A new constraint programming model and solving for the cyclic hoist scheduling problem". Constraints 25, n.º 3-4 (9 de novembro de 2020): 319–37. http://dx.doi.org/10.1007/s10601-020-09316-z.

Texto completo da fonte
Resumo:
AbstractThe cyclic hoist scheduling problem (CHSP) is a well-studied optimisation problem due to its importance in industry. Despite the wide range of solving techniques applied to the CHSP and its variants, the models have remained complicated and inflexible, or have failed to scale up with larger problem instances. This article re-examines modelling of the CHSP and proposes a new simple, flexible constraint programming formulation. We compare current state-of-the-art solving technologies on this formulation, and show that modelling in a high-level constraint language, MiniZinc, leads to both a simple, generic model and to computational results that outperform the state of the art. We further demonstrate that combining integer programming and lazy clause generation, using the multiple cores of modern processors, has potential to improve over either solving approach alone.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

HIRD, J. T., NAIHUAN JING e ERNEST STITZINGER. "CODES AND SHIFTED CODES". International Journal of Algebra and Computation 22, n.º 06 (31 de agosto de 2012): 1250054. http://dx.doi.org/10.1142/s0218196712500543.

Texto completo da fonte
Resumo:
The action of the Bernstein operators on Schur functions was given in terms of codes by Carrell and Goulden (2011) and extended to the analog in Schur Q-functions in our previous work. We define a new combinatorial model of extended codes and show that both of these results follow from a natural combinatorial relation induced on codes. The new algebraic structure provides a natural setting for Schur functions indexed by compositions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

B. Paterson, M., D. R. Stinson e R. Wei. "Combinatorial batch codes". Advances in Mathematics of Communications 3, n.º 1 (2009): 13–27. http://dx.doi.org/10.3934/amc.2009.3.13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Davidson, Ruth, e Seth Sullivant. "Polyhedral combinatorics of UPGMA cones". Advances in Applied Mathematics 50, n.º 2 (fevereiro de 2013): 327–38. http://dx.doi.org/10.1016/j.aam.2012.10.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Krieger, M. H. "Where Do Centers Come From?" Environment and Planning A: Economy and Space 19, n.º 9 (setembro de 1987): 1251–60. http://dx.doi.org/10.1068/a191251.

Texto completo da fonte
Resumo:
A ‘center’ is a marked place in space or time or in a collection of objects, and surrounding it is a structure or pattern that supports it. The questions that concern us here are: ‘Why are there centers at all?’ ‘Why is a center at a particular X?’ Historical and combinatorial processes of centralization are reviewed, and a phenomenology and mechanisms are provided. Models considered include: stochastic markets with increasing returns to scale, codes as in DNA, combinatoric processes as in statistical mechanics, and differentiation in biology. Polycenters.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

HIRD, J. T., NAIHUAN JING e ERNEST STITZINGER. "CODES AND SHIFTED CODES OF PARTITIONS". International Journal of Algebra and Computation 21, n.º 08 (dezembro de 2011): 1447–62. http://dx.doi.org/10.1142/s0218196711006595.

Texto completo da fonte
Resumo:
In a recent paper, Carrell and Goulden found a combinatorial identity of the Bernstein operators that they then used to prove Bernstein's theorem. We show that this identity is a straightforward consequence of the classical result. We also show how a similar approach using the codes of partitions can be generalized from Schur functions to also include Schur Q-functions and derive the combinatorial formulation for both cases. We then apply them by examining the Littlewood–Richardson and Pieri rules.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

García-Calcines, José Manuel, Luis Javier Hernández-Paricio e María Teresa Rivas-Rodríguez. "Augmented Simplicial Combinatorics through Category Theory: Cones, Suspensions and Joins". Mathematics 10, n.º 4 (14 de fevereiro de 2022): 590. http://dx.doi.org/10.3390/math10040590.

Texto completo da fonte
Resumo:
In this work, we analyze the combinatorial properties of the category of augmented semi-simplicial sets. We consider various monoidal structures induced by the co-product, the product, and the join operator in this category. In addition, we also consider monoidal structures on augmented sequences of integers induced by the sum and product of integers and by the join of augmented sequences. The cardinal functor that associates to each finite set X its cardinal |X| induces the sequential cardinal that associates to each augmented semi-simplicial finite set X an augmented sequence |X|n of non-negative integers. We prove that the sequential cardinal functor is monoidal for the corresponding monoidal structures. This allows us to easily calculate the number of simplices of cones and suspensions of an augmented semi-simplicial set as well as other augmented semi-simplicial sets which are built by joins. In this way, the monoidal structures of the augmented sequences of numbers may be thought of as an algebraization of the augmented semi-simplicial sets that allows us to do a simpler study of the combinatorics of the augmented semi-simplicial finite sets.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Aggarwal, Divesh, Yevgeniy Dodis e Shachar Lovett. "Non-Malleable Codes from Additive Combinatorics". SIAM Journal on Computing 47, n.º 2 (janeiro de 2018): 524–46. http://dx.doi.org/10.1137/140985251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ghazi, Arjumand, e K. VijayRaghavan. "Control by combinatorial codes". Nature 408, n.º 6811 (novembro de 2000): 419–20. http://dx.doi.org/10.1038/35044174.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Zhang, Hui, Eitan Yaakobi e Natalia Silberstein. "Multiset combinatorial batch codes". Designs, Codes and Cryptography 86, n.º 11 (23 de fevereiro de 2018): 2645–60. http://dx.doi.org/10.1007/s10623-018-0468-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

HSIEH, CHUN-CHUNG. "COMBINATORIC MASSEY–MILNOR LINKING THEORY". Journal of Knot Theory and Its Ramifications 20, n.º 06 (junho de 2011): 927–38. http://dx.doi.org/10.1142/s0218216511009030.

Texto completo da fonte
Resumo:
In this paper following the scheme of Massey–Milnor invariant theory [C. C. Hsieh, Combinatoric and diagrammatic studies in knot theory J. Knot Theory Ramifications16 (2007) 1235–1253; C. C. Hsieh, Massey-Milnor linking = Chern-Simons-Witten graphs, J. Knot Theory Ramifications17 (2008) 877–903; C. C. Hsieh and S. W. Yang, Chern-Simons-Witten configuration space integrals in knot theory, J. Knot Theory Ramifications14 (2005) 689–711], we studied the first non-vanishing linkings of knot theory in ℝ3 and also derived the combinatorial formulae from which we could read out the invariants directly from the knot diagrams. Though the theme is calculus, the idea comes from perturbative quantum field theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Sneyd, Alison. "Codes over rings and applications to combinatorics". Irish Mathematical Society Bulletin 0072 (2013): 37. http://dx.doi.org/10.33232/bims.0072.37.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ghorpade, Sudhir R., e Michael A. Tsfasman. "Schubert varieties, linear codes and enumerative combinatorics". Finite Fields and Their Applications 11, n.º 4 (novembro de 2005): 684–99. http://dx.doi.org/10.1016/j.ffa.2004.09.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Stinson, D. R. "The combinatorics of authentication and secrecy codes". Journal of Cryptology 2, n.º 1 (fevereiro de 1990): 23–49. http://dx.doi.org/10.1007/bf02252868.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Alami, Mustapha, Mohamed Bekkali, Latifa Faouzi e Driss Zhani. "Free poset algebras and combinatorics of cones". Annals of Mathematics and Artificial Intelligence 49, n.º 1-4 (13 de junho de 2007): 15–26. http://dx.doi.org/10.1007/s10472-007-9058-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia