Artigos de revistas sobre o tema "Colloidal hydrogel"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Colloidal hydrogel".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Serpe, M. J., J. Kim e L. A. Lyon. "Colloidal Hydrogel Microlenses". Advanced Materials 16, n.º 2 (16 de janeiro de 2004): 184–87. http://dx.doi.org/10.1002/adma.200305675.
Texto completo da fonteMaikovych, O. V., I. A. Dron, N. M. Bukartyk, O. Yu Bordeniuk e N. G. Nosova. "Іnvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers". Chemistry, Technology and Application of Substances 4, n.º 1 (1 de junho de 2021): 179–85. http://dx.doi.org/10.23939/ctas2021.01.179.
Texto completo da fonteSahiner, Nurettin. "Colloidal nanocomposite hydrogel particles". Colloid and Polymer Science 285, n.º 4 (3 de novembro de 2006): 413–21. http://dx.doi.org/10.1007/s00396-006-1583-7.
Texto completo da fonteSun, Bo, Wenxin Zhang, Yangyang Liu, Min Xue, Lili Qiu e Zihui Meng. "A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide". Biosensors 12, n.º 10 (8 de outubro de 2022): 841. http://dx.doi.org/10.3390/bios12100841.
Texto completo da fonteTang, Wenwei, e Cheng Chen. "Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing". Polymers 12, n.º 3 (9 de março de 2020): 625. http://dx.doi.org/10.3390/polym12030625.
Texto completo da fonteWeiler, M., e C. Pacholski. "Soft colloidal lithography". RSC Advances 7, n.º 18 (2017): 10688–91. http://dx.doi.org/10.1039/c7ra00338b.
Texto completo da fonteXu, Jia-Yu, Chun-Xiao Yan, Xiao-Chun Hu, Chao Liu, Hua-Min Tang, Chao-Hua Zhou e Fei Xue. "Study on a Photonic Crystal Hydrogel Material for Chemical Sensing". International Journal of Nanoscience 14, n.º 01n02 (fevereiro de 2015): 1460025. http://dx.doi.org/10.1142/s0219581x14600254.
Texto completo da fonteKlučáková, Martina. "Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel". Gels 9, n.º 5 (9 de maio de 2023): 395. http://dx.doi.org/10.3390/gels9050395.
Texto completo da fonteHu, Xiaohong, Lingyun Hao, Huaiqing Wang, Xiaoli Yang, Guojun Zhang, Guoyu Wang e Xiao Zhang. "Hydrogel Contact Lens for Extended Delivery of Ophthalmic Drugs". International Journal of Polymer Science 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/814163.
Texto completo da fonteXue, Fei, Zihui Meng, Fengyan Wang, Qiuhong Wang, Min Xue e Zhibin Xu. "A 2-D photonic crystal hydrogel for selective sensing of glucose". J. Mater. Chem. A 2, n.º 25 (2014): 9559–65. http://dx.doi.org/10.1039/c4ta01031k.
Texto completo da fonteWang, Huan, Yuxiao Liu, Zhuoyue Chen, Lingyu Sun e Yuanjin Zhao. "Anisotropic structural color particles from colloidal phase separation". Science Advances 6, n.º 2 (janeiro de 2020): eaay1438. http://dx.doi.org/10.1126/sciadv.aay1438.
Texto completo da fonteMOHAMMADI, ALIASGHAR, e REGHAN J. HILL. "Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels". Journal of Fluid Mechanics 669 (14 de janeiro de 2011): 298–327. http://dx.doi.org/10.1017/s0022112010005045.
Texto completo da fonteQi, Dashan, Haowei Zhu, Yingjie Kong e Qingming Shen. "Injectable Nanomedicine–Hydrogel for NIR Light Photothermal–Chemo Combination Therapy of Tumor". Polymers 14, n.º 24 (18 de dezembro de 2022): 5547. http://dx.doi.org/10.3390/polym14245547.
Texto completo da fonteTajdar, Yasir, Sakshi Singh, Ankit Raj, Ayush Raj e Vibhuti Bhushan. "Effect of silver colloid dressing over conventional dressings in diabetic foot ulcer: A prospective study". Turkish Journal of Surgery 40, n.º 1 (1 de março de 2024): 28–35. http://dx.doi.org/10.47717/turkjsurg.2024.6168.
Texto completo da fonteZheng, Da, Haihua Chen, Shuai Zhang, Jing Wang e Zhong-Ze Gu. "Crystallization of colloidal crystal on hydrogel surface". Colloids and Surfaces A: Physicochemical and Engineering Aspects 292, n.º 1 (janeiro de 2007): 63–68. http://dx.doi.org/10.1016/j.colsurfa.2006.06.003.
Texto completo da fonteFernandes, Gregory E., Daniel J. Beltran-Villegas e Michael A. Bevan. "Interfacial Colloidal Crystallization via Tunable Hydrogel Depletants". Langmuir 24, n.º 19 (7 de outubro de 2008): 10776–85. http://dx.doi.org/10.1021/la802025d.
Texto completo da fonteMeng, Zhi-Jun, Jing Zhang, Xu Deng, Ji Liu, Ziyi Yu e Chris Abell. "Bioinspired hydrogel microfibres colour-encoded with colloidal crystals". Materials Horizons 6, n.º 9 (2019): 1938–43. http://dx.doi.org/10.1039/c9mh00528e.
Texto completo da fonteSmirnov, Michael A., Vitaly K. Vorobiov, Veronika S. Fedotova, Maria P. Sokolova, Natalya V. Bobrova, Nikolay N. Smirnov e Oleg V. Borisov. "A Polyelectrolyte Colloidal Brush Based on Cellulose: Perspectives for Future Applications". Polymers 15, n.º 23 (25 de novembro de 2023): 4526. http://dx.doi.org/10.3390/polym15234526.
Texto completo da fonteSolanki, Dharmendra, Priyanka Yadav, Anjali Soni e Ritu Jaiswal. "HYDROGEL- A REVIEW". International Journal of Pharma Professional’s Research (IJPPR) 14, n.º 1 (3 de fevereiro de 2023): 131–39. http://dx.doi.org/10.48165/ijppronline.2023.14112.
Texto completo da fonteMa, Yue, Peiyan He, Wanli Xie, Qiang Zhang, Weiling Yin, Jianming Pan, Miao Wang, Xin Zhao e Guoqing Pan. "Dynamic Colloidal Photonic Crystal Hydrogels with Self-Recovery and Injectability". Research 2021 (30 de março de 2021): 1–11. http://dx.doi.org/10.34133/2021/9565402.
Texto completo da fonteKuriakose, Naveen, Pallavi Bapat, Harriet Lindsay e John Texter. "Reversible Colloidal Crystallization". MRS Advances 5, n.º 40-41 (2020): 2111–19. http://dx.doi.org/10.1557/adv.2020.286.
Texto completo da fonteZhang, Xiao, Pengyu Wei, Zhengyang Yang, Yishan Liu, Kairui Yang, Yuhao Cheng, Hongwei Yao e Zhongtao Zhang. "Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing". Pharmaceutics 15, n.º 1 (26 de dezembro de 2022): 68. http://dx.doi.org/10.3390/pharmaceutics15010068.
Texto completo da fontePiccone, Ashley. "Mesogels control volume to explore the glass transition". Scilight 2022, n.º 14 (8 de abril de 2022): 141102. http://dx.doi.org/10.1063/10.0010112.
Texto completo da fonteHill, Reghan J. "Steady electrodiffusion in hydrogel-colloid composites: macroscale properties from microscale electrokinetics". Anais da Academia Brasileira de Ciências 82, n.º 1 (março de 2010): 69–86. http://dx.doi.org/10.1590/s0001-37652010000100007.
Texto completo da fonteVöllmecke, Katharina, Rowshon Afroz, Sascha Bierbach, Lee Josephine Brenker, Sebastian Frücht, Alexandra Glass, Ryland Giebelhaus et al. "Hydrogel-Based Biosensors". Gels 8, n.º 12 (25 de novembro de 2022): 768. http://dx.doi.org/10.3390/gels8120768.
Texto completo da fonteRüter, Axel, Stefan Kuczera, Luigi Gentile e Ulf Olsson. "Arrested dynamics in a model peptide hydrogel system". Soft Matter 16, n.º 11 (2020): 2642–51. http://dx.doi.org/10.1039/c9sm02244a.
Texto completo da fonteSalahuddin, Bidita, Shazed Aziz, Shuai Gao, Md Shahriar A. Hossain, Motasim Billah, Zhonghua Zhu e Nasim Amiralian. "Magnetic Hydrogel Composite for Wastewater Treatment". Polymers 14, n.º 23 (22 de novembro de 2022): 5074. http://dx.doi.org/10.3390/polym14235074.
Texto completo da fonteYou, Aimei, Yuhua Cao e Guangqun Cao. "Facile fabrication of a magnetically assembled colloidal photonic crystal film via radical polymerization". RSC Advances 5, n.º 114 (2015): 93945–50. http://dx.doi.org/10.1039/c5ra13900g.
Texto completo da fonteHe, Gang, Sheng Chen, Yunjun Xu, Zhaohua Miao, Yan Ma, Haisheng Qian, Yang Lu e Zhengbao Zha. "Charge reversal induced colloidal hydrogel acts as a multi-stimuli responsive drug delivery platform for synergistic cancer therapy". Materials Horizons 6, n.º 4 (2019): 711–16. http://dx.doi.org/10.1039/c9mh00020h.
Texto completo da fonteBurdette, Mary K., Haley W. Jones, Yuriy Bandera e Stephen H. Foulger. "X-ray radioluminescent hydrogel stabilized crystalline colloidal arrays". Optical Materials Express 9, n.º 3 (21 de fevereiro de 2019): 1416. http://dx.doi.org/10.1364/ome.9.001416.
Texto completo da fonteDebord, J. D., S. Eustis, S. Byul Debord, M. T. Lofye e L. A. Lyon. "Color-Tunable Colloidal Crystals from Soft Hydrogel Nanoparticles". Advanced Materials 14, n.º 9 (3 de maio de 2002): 658–62. http://dx.doi.org/10.1002/1521-4095(20020503)14:9<658::aid-adma658>3.0.co;2-3.
Texto completo da fonteAbrahamsson, Christoffer, Lars Nordstierna, Johan Bergenholtz, Annika Altskär e Magnus Nydén. "Magnetically induced structural anisotropy in binary colloidal gels and its effect on diffusion and pressure driven permeability". Soft Matter 10, n.º 24 (2014): 4403–12. http://dx.doi.org/10.1039/c4sm00315b.
Texto completo da fonteMen, Dandan, Honghua Zhang, Lifeng Hang, Dilong Liu, Xinyang Li, Weiping Cai, Qihua Xiong e Yue Li. "Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: anti-curling performance and enhanced optical diffraction intensity". Journal of Materials Chemistry C 3, n.º 15 (2015): 3659–65. http://dx.doi.org/10.1039/c5tc00174a.
Texto completo da fontePark, H., K. H. Lee, Y. B. Kim, S. B. Ambade, S. H. Noh, W. Eom, J. Y. Hwang, W. J. Lee, J. Huang e T. H. Han. "Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport". Science Advances 4, n.º 11 (novembro de 2018): eaau2104. http://dx.doi.org/10.1126/sciadv.aau2104.
Texto completo da fonteShewan, Heather M., Gleb E. Yakubov, Mauricio R. Bonilla e Jason R. Stokes. "Viscoelasticity of non-colloidal hydrogel particle suspensions at the liquid–solid transition". Soft Matter 17, n.º 19 (2021): 5073–83. http://dx.doi.org/10.1039/d0sm01624a.
Texto completo da fonteKanai, Toshimitsu, Naoto Kobayashi e Hiroyuki Tajima. "Enhanced linear thermosensitivity of gel-immobilized colloidal photonic crystal film bound on glass substrate". Materials Advances 2, n.º 8 (2021): 2600–2603. http://dx.doi.org/10.1039/d1ma00041a.
Texto completo da fonteQin, Junjie, Bohua Dong, Xue Li, Jiwei Han, Rongjie Gao, Ge Su, Lixin Cao e Wei Wang. "Fabrication of intelligent photonic crystal hydrogel sensors for selective detection of trace mercury ions in seawater". Journal of Materials Chemistry C 5, n.º 33 (2017): 8482–88. http://dx.doi.org/10.1039/c7tc02140b.
Texto completo da fonteChen, Dong, Esther Amstad, Chun-Xia Zhao, Liheng Cai, Jing Fan, Qiushui Chen, Mingtan Hai et al. "Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal Surfactants". ACS Nano 11, n.º 12 (15 de dezembro de 2017): 11978–85. http://dx.doi.org/10.1021/acsnano.7b03110.
Texto completo da fonteShabaniverki, Soheila, e Jaime J. Juárez. "Characterizing gelatin hydrogel viscoelasticity with diffusing colloidal probe microscopy". Journal of Colloid and Interface Science 497 (julho de 2017): 73–82. http://dx.doi.org/10.1016/j.jcis.2017.02.057.
Texto completo da fonteApkarian, Robert P., Elizabeth R. Wright, Victor A. Seredyuk, Susan Eustis, L. Andrew Lyon, Vincent P. Conticello e Fredric M. Menger. "In-Lens Cryo-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels". Microscopy and Microanalysis 9, n.º 4 (agosto de 2003): 286–95. http://dx.doi.org/10.1017/s1431927603030551.
Texto completo da fonteHu, Hai Bo, Qian Wang Chen, Ran Li, Xiang Kai Kong e Jian Chen. "Exploration of the Structures of the Magnetically Induced Self-Assembly Photonic Crystals in a Solidified Polymer Matrix". Advanced Materials Research 634-638 (janeiro de 2013): 2324–31. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2324.
Texto completo da fonteMartin, Steve, Hanqing Wang, Laura Hartmann, Tilo Pompe e Stephan Schmidt. "Quantification of protein–materials interaction by soft colloidal probe spectroscopy". Physical Chemistry Chemical Physics 17, n.º 5 (2015): 3014–18. http://dx.doi.org/10.1039/c4cp05484a.
Texto completo da fontePaze, Aigars, Sanita Vitolina, Rudolfs Berzins, Janis Rizhikovs, Raimonds Makars, Daniela Godina e Arturs Teresko. "The Study of Betulin Particles Containing Hydrogels Prepared by Antisolvent Precipitation". Key Engineering Materials 933 (17 de outubro de 2022): 139–46. http://dx.doi.org/10.4028/p-rhk0o3.
Texto completo da fonteHassan, Abeer S., e Ghareb M. Soliman. "Rutin Nanocrystals with Enhanced Anti-Inflammatory Activity: Preparation and Ex Vivo/In Vivo Evaluation in an Inflammatory Rat Model". Pharmaceutics 14, n.º 12 (6 de dezembro de 2022): 2727. http://dx.doi.org/10.3390/pharmaceutics14122727.
Texto completo da fonteWu, Yuchao, Darshil U. Shah, Chenyan Liu, Ziyi Yu, Ji Liu, Xiaohe Ren, Matthew J. Rowland, Chris Abell, Michael H. Ramage e Oren A. Scherman. "Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel". Proceedings of the National Academy of Sciences 114, n.º 31 (10 de julho de 2017): 8163–68. http://dx.doi.org/10.1073/pnas.1705380114.
Texto completo da fonteMeng, Guangnan, Vinothan N. Manoharan e Adeline Perro. "Core–shell colloidal particles with dynamically tunable scattering properties". Soft Matter 13, n.º 37 (2017): 6293–96. http://dx.doi.org/10.1039/c7sm01740e.
Texto completo da fonteWang, Zhe, Min Xue, Herong Zhang, Zihui Meng, Kenneth J. Shea, Lili Qiu, Tiantian Ji e Tengsheng Xie. "Self-assembly of a nano hydrogel colloidal array for the sensing of humidity". RSC Advances 8, n.º 18 (2018): 9963–69. http://dx.doi.org/10.1039/c7ra12661a.
Texto completo da fonteMalekmohammadi, Samira, Negar Sedghi Aminabad, Amin Sabzi, Amir Zarebkohan, Mehdi Razavi, Massoud Vosough, Mahdi Bodaghi e Hajar Maleki. "Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications". Biomedicines 9, n.º 11 (26 de outubro de 2021): 1537. http://dx.doi.org/10.3390/biomedicines9111537.
Texto completo da fonteMora, Nestor Lopez, Yue Gao, M. Gertrude Gutierrez, Justin Peruzzi, Ivan Bakker, Ruud J. R. W. Peters, Bianka Siewert et al. "Evaluation of dextran(ethylene glycol) hydrogel films for giant unilamellar lipid vesicle production and their application for the encapsulation of polymersomes". Soft Matter 13, n.º 33 (2017): 5580–88. http://dx.doi.org/10.1039/c7sm00551b.
Texto completo da fonteHoltz, John H., e Sanford A. Asher. "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials". Nature 389, n.º 6653 (outubro de 1997): 829–32. http://dx.doi.org/10.1038/39834.
Texto completo da fonte