Literatura científica selecionada sobre o tema "Colloidal hydrogel"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Colloidal hydrogel".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Colloidal hydrogel"
Serpe, M. J., J. Kim e L. A. Lyon. "Colloidal Hydrogel Microlenses". Advanced Materials 16, n.º 2 (16 de janeiro de 2004): 184–87. http://dx.doi.org/10.1002/adma.200305675.
Texto completo da fonteMaikovych, O. V., I. A. Dron, N. M. Bukartyk, O. Yu Bordeniuk e N. G. Nosova. "Іnvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers". Chemistry, Technology and Application of Substances 4, n.º 1 (1 de junho de 2021): 179–85. http://dx.doi.org/10.23939/ctas2021.01.179.
Texto completo da fonteSahiner, Nurettin. "Colloidal nanocomposite hydrogel particles". Colloid and Polymer Science 285, n.º 4 (3 de novembro de 2006): 413–21. http://dx.doi.org/10.1007/s00396-006-1583-7.
Texto completo da fonteSun, Bo, Wenxin Zhang, Yangyang Liu, Min Xue, Lili Qiu e Zihui Meng. "A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide". Biosensors 12, n.º 10 (8 de outubro de 2022): 841. http://dx.doi.org/10.3390/bios12100841.
Texto completo da fonteTang, Wenwei, e Cheng Chen. "Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing". Polymers 12, n.º 3 (9 de março de 2020): 625. http://dx.doi.org/10.3390/polym12030625.
Texto completo da fonteWeiler, M., e C. Pacholski. "Soft colloidal lithography". RSC Advances 7, n.º 18 (2017): 10688–91. http://dx.doi.org/10.1039/c7ra00338b.
Texto completo da fonteXu, Jia-Yu, Chun-Xiao Yan, Xiao-Chun Hu, Chao Liu, Hua-Min Tang, Chao-Hua Zhou e Fei Xue. "Study on a Photonic Crystal Hydrogel Material for Chemical Sensing". International Journal of Nanoscience 14, n.º 01n02 (fevereiro de 2015): 1460025. http://dx.doi.org/10.1142/s0219581x14600254.
Texto completo da fonteKlučáková, Martina. "Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel". Gels 9, n.º 5 (9 de maio de 2023): 395. http://dx.doi.org/10.3390/gels9050395.
Texto completo da fonteHu, Xiaohong, Lingyun Hao, Huaiqing Wang, Xiaoli Yang, Guojun Zhang, Guoyu Wang e Xiao Zhang. "Hydrogel Contact Lens for Extended Delivery of Ophthalmic Drugs". International Journal of Polymer Science 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/814163.
Texto completo da fonteXue, Fei, Zihui Meng, Fengyan Wang, Qiuhong Wang, Min Xue e Zhibin Xu. "A 2-D photonic crystal hydrogel for selective sensing of glucose". J. Mater. Chem. A 2, n.º 25 (2014): 9559–65. http://dx.doi.org/10.1039/c4ta01031k.
Texto completo da fonteTeses / dissertações sobre o assunto "Colloidal hydrogel"
McGrath, Jonathan G. "Synthesis and Characterization of Core/Shell Hydrogel Nanoparticles and Their Application to Colloidal Crystal Optical Materials". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14537.
Texto completo da fonteJohnson, Elizabeth Edna. "Colloidal gas aphron foams : a novel approach to a hydrogel based tissue engineered myocardial patch /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/10579.
Texto completo da fonteCho, Jae Kyu. "The dynamics and phase behavior of suspensions of stimuli-responsive colloids". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31682.
Texto completo da fonteCommittee Chair: Victor Breedveld; Committee Member: Eric W. Weeks; Committee Member: Hang Lu; Committee Member: J. Carson Meredith; Committee Member: L. Andrew Lyon. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Duret, Bérénice. "Mise au point de dispersiοns aqueuses de particules d’huiles gélifiées et applications à la prοtectiοn de la peau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH39.
Texto completo da fonteThis thesis aims to develop eco-responsible cosmetic formulas with a low number of ingredients, in line with the current context of “Clean-label” in this sector. We focused on dispersions of gelled oil particles, called “gelosome dispersions”, which have not yet been explored for cosmetic use. Known to be stable and capable of encapsulating hydrophobic active ingredients, the question of their texture and their application onto the surface of the skin remains unanswered to date. They are prepared by hot emulsification of an organogel, composed of oil and a lipophilic gelator (12-hydroxystearic acid), in the presence of a stabilizing agent (80% hydrolyzed polyvinyl alcohol). Upon cooling, the emulsion leads to a dispersion of organogel particles. We first demonstrated the possibility of making gelosome dispersions with cosmetic oils and a preservative. A wide variety of textures was obtained, ranging from fluid liquids to firm and brittle gels. Physicochemical analysis and microscopic observation of these new formulas made it possible to identify their microstructures: under certain conditions, connections are formed between the gelosomes, and a colloidal hydrogel is obtained. The factors and mechanisms leading to individualized or connected gelosomes were determined by the study of interactions at the interface. Gelosome dispersions, even the most fluid, showed great stability. Finally, new dispersions of gelosomes were formulated using stabilizers of various types and stabilization modes. The methodology used during this work enabled the establishment of a link between the stabilizer and the properties of the dispersions. Different mechanisms could be identified, inducing interesting and varied microstructures and application properties. For the first time, the texture properties of the dispersions, characteristic of a topical application, were collected across all systems using a combined approach of in vitro rheological analyzes and in vivo sensory analyses; the perceptions were described and explained according to the influence of the nature of the oil, the stabilizer and the type of microstructure
Mohammadi, Aliasghar. "Dynamics of colloidal inclusions in hydrogels". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104772.
Texto completo da fonteLe champ electrique induit par la reponse de particules colloidales dans des hydrogels est utilise comme une methode de diagnostic pour sonder interfaces colloide-hydrogel, ou l'on mesure le potentiel electrocinetique des particules de polystyrene dans des hydrogels de polyacrylamide en utilisant une configuration de pinces optiques par interferometrie arriere-plan focal et controle de feed-back pour compenser la derive a basse frequence. Une generalisation de relations pertinentes dans le modele standard electrocinetique est utilise pour interpreter les experiences, en montrant comment le potentiel electrocintique depend de la force ionique, la chimie de surface, et la teneur en polymere du milieu de suspension. Un comportement similaire de l'inuence de la force ionique et de la chimie de surface sur le potentiel de surface des particules de polystyrene dans les deux hydrogels et de l'eau demineralisee est observee. Alors que le taux de reticulation, defini comme le rapport molaire de reticulation unites et le nombre total de monomeres, a un faible effet sur le potentiel de surface collodale inclusion, l'influence de la concentration en monomeres est importante. En outre, nous presentons des calculs theoriques de la dynamique des inclusions non charges spherique chargee, squelettes polymere compressible pour faciliter l'interpretation exacte de classique et electrique micro-rheologie, et l'electroacoustique. En outre, nous nous engageons l'analyse thorique de la reponse dynamique des hydrogels dans un canal a plaques paralleles a des stimuli externes, comme un gradient de pression et/ ou d'un champ electrique.
Chen, Yunhua. "Multiple hydrogen bond arrays reinforced polymer colloidal materials". Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/54479/.
Texto completo da fonteMa, Manlung. "Exploration of peptide-based hydrogels /". View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202008%20MA.
Texto completo da fonteDebord, Justin. "Synthesis, characterization and properties of bioconjugated hydrogel nanoparticles". Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131123/unrestricted/debord%5Fjustin%5F200405%5Fphd.pdf.
Texto completo da fonteZainuddin. "Synthesis and calcification of hydrogel biomaterials /". [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18693.pdf.
Texto completo da fonteAufderhorst-Roberts, Anders. "Microrheological characterisation of Fmoc derivative hydrogels". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608155.
Texto completo da fonteLivros sobre o assunto "Colloidal hydrogel"
Rimmer, Steve. Biomedical hydrogels: Biochemistry, manufacture and medical applications. Oxford: Woodhead, 2011.
Encontre o texto completo da fonteLi, Hua. Smart hydrogel modelling. Heidelberg: New York, 2009.
Encontre o texto completo da fonteCâmara, Fabricio Vitor, e Leandro J. Ferreira. Hydrogels: Synthesis, characterization and applications. New York: Nova Biomedical, 2012.
Encontre o texto completo da fonte1961-, Stein David B., ed. Handbook of hydrogels: Properties, preparation & applications. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonte1961-, Stein David B., ed. Handbook of hydrogels: Properties, preparation & applications. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteGerlach, Gerald, e Karl-Friedrich Arndt. Hydrogel sensors and actuators. Heidelberg: Springer, 2009.
Encontre o texto completo da fonteM, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting e American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), eds. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.
Encontre o texto completo da fonteBarbucci, Rolando. Hydrogels: Biological Properties and Applications. Milano: Springer-Verlag Milan, 2009.
Encontre o texto completo da fonteOkano, Teruo, Raphael M. Ottenbrite e Kinam Park. Biomedical applications of hydrogels handbook. New York: Springer, 2010.
Encontre o texto completo da fonteNair, Lakshmi S. Injectable hydrogels for regenerative engineering. Hackensack, NJ: Imperial College Press, 2016.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Colloidal hydrogel"
Prokop, Ales, Evgenii Kozlov, Gianluca Carlesso e Jeffrey M. Davidson. "Hydrogel-Based Colloidal Polymeric System for Protein and Drug Delivery: Physical and Chemical Characterization, Permeability Control and Applications". In Filled Elastomers Drug Delivery Systems, 119–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45362-8_3.
Texto completo da fonteKanai, Toshimitsu. "CHAPTER 6. Tunable Colloidal Crystals Immobilized in Soft Hydrogels". In Responsive Photonic Nanostructures, 119–49. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737760-00119.
Texto completo da fonteRoy, Niladri, Nabanita Saha, Takeshi Kitano, Eva Vitkova e Petr Saha. "Effectiveness of Polymer Sheet Layer to Protect Hydrogel Dressings". In Trends in Colloid and Interface Science XXIV, 127–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19038-4_22.
Texto completo da fonteMcMurrough, I., R. Kelly e D. Madigan. "Colloidal stabilization of lager beer". In European Brewery Convention, 663–72. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780199634668.003.0073.
Texto completo da fonteRivera-Llabres, V., K. Gentry e C. M. Rinaldi-Ramos. "Application of Magnetic Colloids in Hydrogels for Tissue Engineering". In Magnetic Soft Matter, 410–45. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169755-00410.
Texto completo da fonteJuo, Anthony S. R., e Kathrin Franzluebbers. "Soil Chemistry". In Tropical Soils. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195115987.003.0006.
Texto completo da fonteNazir, Roshan, Abhay Prasad, Ashish Parihar, Mohammed S. Alqahtani e Rabbani Syed. "Colloidal Nanocrystal-Based Electrocatalysts for Combating Environmental Problems and Energy Crisis". In Colloids - Types, Preparation and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95338.
Texto completo da fonteSAIEVAR-IRANIZAD, E. "Colloidal Semiconductors in Solar Hydrogen Production". In Energy and the Environment, 320–24. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-037539-7.50053-3.
Texto completo da fonteZheltonozhskaya, Tatyana, Nataliya Permyakova e Boris Eremenko. "INTER- AND INTRAMOLECULAR POLYCOMPLEXES IN POLYDISPERSED COLLOIDAL SYSTEMS". In Hydrogen-Bonded Interpolymer Complexes, 201–34. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812709776_0008.
Texto completo da fonteSposito, Garrison. "Soil Colloids". In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0014.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Colloidal hydrogel"
Susilowati, Endang, Sulistyo Saputro, Lina Mahardiani, Budi Hastuti, Nanik Dwi Nurhayati, Wirawan Ciptonugroho e Nur Azizah Febriani. "Synthesis and Characterization of Silver Nanoparticles/Kappa Carrageenan-Chitosan Hydrogel Films as Antibacterial Material". In 8th International Conference on Advanced Material for Better Future, 51–61. Switzerland: Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-di9ayq.
Texto completo da fonteDesphande, Deepti S., e A. K. Bajpai. "Green synthesis of colloidal silver nanoparticles reinforced PVA-corn starch hydrogel films". In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098714.
Texto completo da fonteMell, Sarah, Haley W. Jones, Yuriy Bandera e Stephen H. Foulger. "Hydrogel Films Encapsulating Fully Organic Scintillating Crystalline Colloidal Arrays with Tunable Emission". In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/iprsn.2021.jtu1a.34.
Texto completo da fonteCho, Jae Kyu, Zhiyong Meng, L. Andrew Lyon, Victor Breedveld, Albert Co, Gary L. Leal, Ralph H. Colby e A. Jeffrey Giacomin. "Direct Observation of Phase Transition Dynamics in Suspensions of Soft Colloidal Hydrogel Particles". In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964500.
Texto completo da fonteRutirawut, T., A. Sinsarp, K. Tivakornsasithorn, T. Srikhirin e T. Osotchan. "Phase shift on reflection from polystyrene colloidal photonic crystal film on hydrogel surface". In International Conference on Photonics Solutions 2015, editado por Surasak Chiangga e Sarun Sumriddetchkajorn. SPIE, 2015. http://dx.doi.org/10.1117/12.2195879.
Texto completo da fonteYoshida, Koki, Shota Yamawaki e Hiroaki Onoe. "Ethanol Driven Micro-Robots with Photonic Colloidal Crystal Hydrogel for Exploring and Sensing Stimuli". In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021. http://dx.doi.org/10.1109/mems51782.2021.9375420.
Texto completo da fonteMell, Sarah, Haley W. Jones, Yuriy Bandera e Stephen H. Foulger. "Organic X-Ray Radioluminescent Crystalline Colloidal Arrays Encapsulated in Poly(Ethylene Glycol) Methacrylate Based Hydrogel Films". In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/boda.2021.jw1a.12.
Texto completo da fonteNutter, Julia, Nuria Acevedo e Xiaolei Shi. "Development and characterization of a novel, edible oleocolloid made of rice bran wax oleogel and sodium alginate-kappa-carrageenan hydrogel". In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ikew5118.
Texto completo da fonteEloi, Jean-Charles, Myles P. Worsley, Paul A. Sermon, William Healy e Christine Dimech. "Design of nanoengineered hybrid PVA/PNIPAm/CaCl2/SiO2-Polystyrene (PSt) colloidal crystal hydrogel coatings that sweat/rehydrate H2O from the atmosphere to give sustainable cooling and self-indicate their state". In SPIE Nanoscience + Engineering, editado por Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg e Taleb Mokari. SPIE, 2016. http://dx.doi.org/10.1117/12.2237561.
Texto completo da fonteMuradov, Nazim Z., e Ali T-Raissi. "Solar Production of Hydrogen Using “Self-Assembled’’ Polyoxometalate Photocatalysts". In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76071.
Texto completo da fonteRelatórios de organizações sobre o assunto "Colloidal hydrogel"
Asher, Sanford A. Novel Approaches to Glucose Sensing Based on Polymerized Crystalline Colloidal Array Hydrogel Sensors. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2006. http://dx.doi.org/10.21236/ada631491.
Texto completo da fonteAsenath-Smith, Emily, Emma Ambrogi, Eftihia Barnes e Jonathon Brame. CuO enhances the photocatalytic activity of Fe₂O₃ through synergistic reactive oxygen species interactions. Engineer Research and Development Center (U.S.), setembro de 2021. http://dx.doi.org/10.21079/11681/42131.
Texto completo da fonte