Artigos de revistas sobre o tema "Colloidal agglomeration"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Colloidal agglomeration".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Osaci, Mihaela, e Matteo Cacciola. "Influence of the magnetic nanoparticle coating on the magnetic relaxation time". Beilstein Journal of Nanotechnology 11 (12 de agosto de 2020): 1207–16. http://dx.doi.org/10.3762/bjnano.11.105.
Texto completo da fonteMaillette, Sébastien, Caroline Peyrot, Tapas Purkait, Muhammad Iqbal, Jonathan G. C. Veinot e Kevin J. Wilkinson. "Heteroagglomeration of nanosilver with colloidal SiO2 and clay". Environmental Chemistry 14, n.º 1 (2017): 1. http://dx.doi.org/10.1071/en16070.
Texto completo da fonteMarć, Maciej, Andrzej Drzewiński, Wiktor W. Wolak, Lidia Najder-Kozdrowska e Mirosław R. Dudek. "Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field". Nanomaterials 11, n.º 7 (1 de julho de 2021): 1737. http://dx.doi.org/10.3390/nano11071737.
Texto completo da fonteSolodova O.V., Sokolov A.E., Ivanova O.S., Volochaev M.N., Lapin I.N., Goncharova D.A. e Svetlichnyi V.A. "Magneto-optical properties of nanoparticle dispersions based on Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=-, obtained by pulse laser ablation in a liquid". Physics of the Solid State 64, n.º 14 (2022): 2334. http://dx.doi.org/10.21883/pss.2022.14.54331.147.
Texto completo da fonteBernad, Sandor I., Vlad Socoliuc, Izabell Craciunescu, Rodica Turcu e Elena S. Bernad. "Field-Induced Agglomerations of Polyethylene-Glycol-Functionalized Nanoclusters: Rheological Behaviour and Optical Microscopy". Pharmaceutics 15, n.º 11 (10 de novembro de 2023): 2612. http://dx.doi.org/10.3390/pharmaceutics15112612.
Texto completo da fonteJia, Jun, e Fengyuan Sun. "Application of Polymer Nanocolloid Preparation in Stability Analysis of Motion Mechanics". Advances in Materials Science and Engineering 2022 (31 de agosto de 2022): 1–11. http://dx.doi.org/10.1155/2022/7260515.
Texto completo da fonteCecil, Adam J., John E. Payne, Luke T. Hawtrey, Ben King, Gerold A. Willing e Stuart J. Williams. "Nonlinear Agglomeration of Bimodal Colloids under Microgravity". Gravitational and Space Research 10, n.º 1 (1 de janeiro de 2022): 1–9. http://dx.doi.org/10.2478/gsr-2022-0001.
Texto completo da fonteIp, Alexander H., Amirreza Kiani, Illan J. Kramer, Oleksandr Voznyy, Hamidreza F. Movahed, Larissa Levina, Michael M. Adachi, Sjoerd Hoogland e Edward H. Sargent. "Infrared Colloidal Quantum Dot PhotovoltaicsviaCoupling Enhancement and Agglomeration Suppression". ACS Nano 9, n.º 9 (19 de agosto de 2015): 8833–42. http://dx.doi.org/10.1021/acsnano.5b02164.
Texto completo da fonteSolaimany-Nazar, Ali Reza, e Hassan Rahimi. "Investigation on Agglomeration−Fragmentation Processes in Colloidal Asphaltene Suspensions". Energy & Fuels 23, n.º 2 (19 de fevereiro de 2009): 967–74. http://dx.doi.org/10.1021/ef800728h.
Texto completo da fonteKim, Jin-Wook, e Timothy A. Kramer. "Improved models for fractal colloidal agglomeration: computationally efficient algorithms". Colloids and Surfaces A: Physicochemical and Engineering Aspects 253, n.º 1-3 (fevereiro de 2005): 33–49. http://dx.doi.org/10.1016/j.colsurfa.2004.10.101.
Texto completo da fonteLink, Julian, Bastian Strybny, Thibaut Divoux, Thomas Sowoidnich, Max Coenen, Stefan Gstöhl, Christian M. Schlepütz et al. "Mechanisms of thixotropy in cement suspensions considering influences from shear history and hydration". ce/papers 6, n.º 6 (dezembro de 2023): 698–704. http://dx.doi.org/10.1002/cepa.2810.
Texto completo da fonteDoblas, David, Thomas Kister, Marina Cano-Bonilla, Lola González-García e Tobias Kraus. "Colloidal Solubility and Agglomeration of Apolar Nanoparticles in Different Solvents". Nano Letters 19, n.º 8 (28 de junho de 2019): 5246–52. http://dx.doi.org/10.1021/acs.nanolett.9b01688.
Texto completo da fonteOzaki, Masataka, Tamami Egami, Noriko Sugiyama e Egon Matijević. "Agglomeration in colloidal hematite dispersions due to weak magnetic interactions". Journal of Colloid and Interface Science 126, n.º 1 (novembro de 1988): 212–19. http://dx.doi.org/10.1016/0021-9797(88)90114-2.
Texto completo da fonteBarcenas, Mariana, Janna Douda e Yurko Duda. "Temperature dependence of the colloidal agglomeration inhibition: Computer simulation study". Journal of Chemical Physics 127, n.º 11 (21 de setembro de 2007): 114706. http://dx.doi.org/10.1063/1.2768519.
Texto completo da fonteHu, Yang, Lingyun Liu, Fanfei Min, Mingxu Zhang e Shaoxian Song. "Hydrophobic agglomeration of colloidal kaolinite in aqueous suspensions with dodecylamine". Colloids and Surfaces A: Physicochemical and Engineering Aspects 434 (outubro de 2013): 281–86. http://dx.doi.org/10.1016/j.colsurfa.2013.05.074.
Texto completo da fonteEcheverría, Coro, e Carmen Mijangos. "A Way to Predict Gold Nanoparticles/Polymer Hybrid Microgel Agglomeration Based on Rheological Studies". Nanomaterials 9, n.º 10 (21 de outubro de 2019): 1499. http://dx.doi.org/10.3390/nano9101499.
Texto completo da fonteBarcenas, Mariana, e Yurko Duda. "Irreversible colloidal agglomeration in presence of associative inhibitors: Computer simulation study". Physics Letters A 365, n.º 5-6 (junho de 2007): 454–57. http://dx.doi.org/10.1016/j.physleta.2007.01.059.
Texto completo da fonteСолодова, О. В., А. Э. Соколов, О. С. Иванова, М. Н. Волочаев, И. Н. Лапин, Д. А. Гончарова e В. А. Светличный. "Магнитооптические свойства дисперсий наночастиц на основе Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=-, полученных методом импульсной лазерной абляции в жидкости". Физика твердого тела 63, n.º 12 (2021): 2061. http://dx.doi.org/10.21883/ftt.2021.12.51666.147.
Texto completo da fonteKuz’menko, A. P., N. A. Leonenko, V. I. Kharchenko, N. A. Kuz’menko, I. V. Silyutin e I. V. Khrapov. "Thermocapillary mechanism of laser-stimulated agglomeration of ultradisperse and colloidal-ionic gold". Technical Physics Letters 35, n.º 9 (setembro de 2009): 837–40. http://dx.doi.org/10.1134/s1063785009090156.
Texto completo da fonteHenry, Christophe, Jean-Pierre Minier, Jacek Pozorski e Grégory Lefèvre. "A New Stochastic Approach for the Simulation of Agglomeration between Colloidal Particles". Langmuir 29, n.º 45 (30 de outubro de 2013): 13694–707. http://dx.doi.org/10.1021/la403615w.
Texto completo da fonteGorji, Mohammad Saleh, Abdul Razak Khairunisak e Kuan Yew Cheong. "Deposition of Gold Nanoparticles on Linker-Free Silicon Substrate by Spin-Coating". Advanced Materials Research 1024 (agosto de 2014): 124–27. http://dx.doi.org/10.4028/www.scientific.net/amr.1024.124.
Texto completo da fonteNg, Qi Hwa, Jit Kang Lim, Ahmad Abdul Latif, Boon Seng Ooi e Siew Chun Low. "Enhance the Colloidal Stability of Magnetite Nanoparticles Using Poly(sodium 4-styrene sulfonate) Stabilizers". Applied Mechanics and Materials 625 (setembro de 2014): 168–71. http://dx.doi.org/10.4028/www.scientific.net/amm.625.168.
Texto completo da fonteSiepmann, R., F. von der Kammer e U. Förstner. "Colloidal transport and agglomeration in column studies for advanced run-off filtration facilities - particle size and time resolved monitoring of effluents with flow-field-flowfractionation". Water Science and Technology 50, n.º 12 (1 de dezembro de 2004): 95–102. http://dx.doi.org/10.2166/wst.2004.0700.
Texto completo da fonteGodymchuk, Anna, Alexey Ilyashenko, Yury Konyukhov, Peter Ogbuna Offor e Galiya Baisalova. "Agglomeration and dissolution of iron oxide nanoparticles in simplest biological media". AIMS Materials Science 9, n.º 4 (2022): 642–52. http://dx.doi.org/10.3934/matersci.2022039.
Texto completo da fonteCapek, Ignác. "Noble Metal Nanoparticles and Their (Bio) Conjugates. I. Preparation". International Journal of Chemistry 8, n.º 1 (6 de janeiro de 2016): 74. http://dx.doi.org/10.5539/ijc.v8n1p74.
Texto completo da fonteKobayashi, T., D. Bach, M. Altmaier, T. Sasaki e H. Moriyama. "Effect of temperature on the solubility and solid phase stability of zirconium hydroxide". Radiochimica Acta 101, n.º 10 (outubro de 2013): 645–51. http://dx.doi.org/10.1524/ract.2013.2074.
Texto completo da fonteTaketomi, Susamu, Hiromasa Takahashi, Nobuyuki Inaba e Hideki Miyajima. "Experimental and Theoretical Investigations on Agglomeration of Magnetic Colloidal Particles in Magnetic Fluids". Journal of the Physical Society of Japan 60, n.º 5 (15 de maio de 1991): 1689–707. http://dx.doi.org/10.1143/jpsj.60.1689.
Texto completo da fonteYang, Yung-Jih, Aniruddha V. Kelkar, David S. Corti e Elias I. Franses. "Effect of Interparticle Interactions on Agglomeration and Sedimentation Rates of Colloidal Silica Microspheres". Langmuir 32, n.º 20 (10 de maio de 2016): 5111–23. http://dx.doi.org/10.1021/acs.langmuir.6b00925.
Texto completo da fonteSchäfer, Bastian, Martin Hecht, Jens Harting e Hermann Nirschl. "Agglomeration and filtration of colloidal suspensions with DVLO interactions in simulation and experiment". Journal of Colloid and Interface Science 349, n.º 1 (setembro de 2010): 186–95. http://dx.doi.org/10.1016/j.jcis.2010.05.025.
Texto completo da fonteWeng, Ying-Chieh, I. A. Rusakova, Andrei Baikalov, J. W. Chen e Nae-Lih Wu. "Microstructural Evolution of Nanocrystalline Magnetite Synthesized by Electrocoagulation". Journal of Materials Research 20, n.º 1 (janeiro de 2005): 75–80. http://dx.doi.org/10.1557/jmr.2005.0003.
Texto completo da fonteHendrix, Douglas, Jessica McKeon e Kay Wille. "Behavior of Colloidal Nanosilica in an Ultrahigh Performance Concrete Environment Using Dynamic Light Scattering". Materials 12, n.º 12 (19 de junho de 2019): 1976. http://dx.doi.org/10.3390/ma12121976.
Texto completo da fonteDíaz, Marcos, Flora Barba, Miriam Miranda, Francisco Guitián, Ramón Torrecillas e José S. Moya. "Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite". Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/498505.
Texto completo da fonteTekeli, Süleyman, e Metin Gürü. "The Factors Affecting Colloidal Processing of 8YSCZ Ceramics". Key Engineering Materials 280-283 (fevereiro de 2007): 729–34. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.729.
Texto completo da fonteSarkar, P., S. Panda, B. Maji e A. K. Mukhopadhyayan. "Plasmon induced quantified agglomeration of SiO2 nanoparticles to improve in efficiency in solar cell". Journal of Ovonic Research 18, n.º 6 (21 de novembro de 2022): 723–30. http://dx.doi.org/10.15251/jor.2022.186.723.
Texto completo da fonteDomingos, Rute F., Zohreh Rafiei, Carlos E. Monteiro, Mohammad A. K. Khan e Kevin J. Wilkinson. "Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid". Environmental Chemistry 10, n.º 4 (2013): 306. http://dx.doi.org/10.1071/en12202.
Texto completo da fonteMackert, Viktor, Martin A. Schroer e Markus Winterer. "Unraveling agglomeration and deagglomeration in aqueous colloidal dispersions of very small tin dioxide nanoparticles". Journal of Colloid and Interface Science 608 (fevereiro de 2022): 2681–93. http://dx.doi.org/10.1016/j.jcis.2021.10.194.
Texto completo da fonteChoi, Young Joon, e Ned Djilali. "Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow". Physics of Fluids 28, n.º 1 (janeiro de 2016): 013304. http://dx.doi.org/10.1063/1.4939501.
Texto completo da fonteIm, Hee-Jung, e Euo Chang Jung. "Colloidal nanoparticles produced from Cu metal in water by laser ablation and their agglomeration". Radiation Physics and Chemistry 118 (janeiro de 2016): 6–10. http://dx.doi.org/10.1016/j.radphyschem.2015.06.005.
Texto completo da fonteGarcia-Perez, P., C. Pagnoux, A. Pringuet, A. Videcoq e J. F. Baumard. "Agglomeration of alumina submicronparticles by silica nanoparticles: Application to processing spheres by colloidal route". Journal of Colloid and Interface Science 313, n.º 2 (setembro de 2007): 527–36. http://dx.doi.org/10.1016/j.jcis.2007.04.050.
Texto completo da fonteProrok, Vedrana, Dejan Movrin, Nataša Lukić e Svetlana Popović. "New Insights into the Fouling of a Membrane during the Ultrafiltration of Complex Organic–Inorganic Feed Water". Membranes 13, n.º 3 (14 de março de 2023): 334. http://dx.doi.org/10.3390/membranes13030334.
Texto completo da fonteBantz, Christoph, Olga Koshkina, Thomas Lang, Hans-Joachim Galla, C. James Kirkpatrick, Roland H. Stauber e Michael Maskos. "The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions". Beilstein Journal of Nanotechnology 5 (15 de outubro de 2014): 1774–86. http://dx.doi.org/10.3762/bjnano.5.188.
Texto completo da fonteYang, Yung-Jih, Aniruddha V. Kelkar, David S. Corti e Elias I. Franses. "Correction to “Effect of Interparticle Interactions on Agglomeration and Sedimentation Rates of Colloidal Silica Microspheres”". Langmuir 32, n.º 45 (2 de novembro de 2016): 11993–95. http://dx.doi.org/10.1021/acs.langmuir.6b03566.
Texto completo da fonteJarray, A., V. Gerbaud e M. Hemati. "Structure of aqueous colloidal formulations used in coating and agglomeration processes: Mesoscale model and experiments". Powder Technology 291 (abril de 2016): 244–61. http://dx.doi.org/10.1016/j.powtec.2015.12.033.
Texto completo da fonteSuhendi, Asep, Asep Bayu Nandiyanto, Muhammad Miftahul Munir, Takashi Ogi e Kikuo Okuyama. "Preparation of agglomeration-free spherical hollow silica particles using an electrospray method with colloidal templating". Materials Letters 106 (setembro de 2013): 432–35. http://dx.doi.org/10.1016/j.matlet.2013.05.056.
Texto completo da fonteWoo, Sunyoung, Soojin Kim, Hyunhong Kim, Young Woo Cheon, Seokjoo Yoon, Jung-Hwa Oh e Jongnam Park. "Charge-Modulated Synthesis of Highly Stable Iron Oxide Nanoparticles for In Vitro and In Vivo Toxicity Evaluation". Nanomaterials 11, n.º 11 (14 de novembro de 2021): 3068. http://dx.doi.org/10.3390/nano11113068.
Texto completo da fonteMadsuha, Alfian F., Akhmad H. Yuwono, Nofrijon Sofyan e Michael Krueger. "Enhanced Device Performance of Bulk Heterojunction (BHJ) Hybrid Solar Cells Based on Colloidal CdSe Quantum Dots (QDs) via Optimized Hexanoic Acid-Assisted Washing Treatment". Advances in Materials Science and Engineering 2019 (1 de abril de 2019): 1–6. http://dx.doi.org/10.1155/2019/7516890.
Texto completo da fontePlüisch, Claudia Simone, Rouven Stuckert e Alexander Wittemann. "Direct Measurement of Sedimentation Coefficient Distributions in Multimodal Nanoparticle Mixtures". Nanomaterials 11, n.º 4 (17 de abril de 2021): 1027. http://dx.doi.org/10.3390/nano11041027.
Texto completo da fonteAmat, Noor Faeizah, Andanastuti Muchtar, Norziha Yahaya e Mariyam Jameelah Ghazali. "Effect of Dispersant Agent Amount in Colloidal Processing of Zirconia Dental Ceramic". Advanced Materials Research 622-623 (dezembro de 2012): 215–19. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.215.
Texto completo da fonteKhlebtsov, Boris, Artur Prilepskii, Maria Lomova e Nikolai Khlebtsov. "Au-nanocluster-loaded human serum albumin nanoparticles with enhanced cellular uptake for fluorescent imaging". Journal of Innovative Optical Health Sciences 09, n.º 02 (março de 2016): 1650004. http://dx.doi.org/10.1142/s1793545816500048.
Texto completo da fonteKempken, Björn, Alexandra Erdt, Jürgen Parisi e Joanna Kolny-Olesiak. "Size Control of Alloyed Cu-In-Zn-S Nanoflowers". Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/826743.
Texto completo da fonte