Literatura científica selecionada sobre o tema "Colloidal agglomeration"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Colloidal agglomeration".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Colloidal agglomeration"
Osaci, Mihaela, e Matteo Cacciola. "Influence of the magnetic nanoparticle coating on the magnetic relaxation time". Beilstein Journal of Nanotechnology 11 (12 de agosto de 2020): 1207–16. http://dx.doi.org/10.3762/bjnano.11.105.
Texto completo da fonteMaillette, Sébastien, Caroline Peyrot, Tapas Purkait, Muhammad Iqbal, Jonathan G. C. Veinot e Kevin J. Wilkinson. "Heteroagglomeration of nanosilver with colloidal SiO2 and clay". Environmental Chemistry 14, n.º 1 (2017): 1. http://dx.doi.org/10.1071/en16070.
Texto completo da fonteMarć, Maciej, Andrzej Drzewiński, Wiktor W. Wolak, Lidia Najder-Kozdrowska e Mirosław R. Dudek. "Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field". Nanomaterials 11, n.º 7 (1 de julho de 2021): 1737. http://dx.doi.org/10.3390/nano11071737.
Texto completo da fonteSolodova O.V., Sokolov A.E., Ivanova O.S., Volochaev M.N., Lapin I.N., Goncharova D.A. e Svetlichnyi V.A. "Magneto-optical properties of nanoparticle dispersions based on Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=-, obtained by pulse laser ablation in a liquid". Physics of the Solid State 64, n.º 14 (2022): 2334. http://dx.doi.org/10.21883/pss.2022.14.54331.147.
Texto completo da fonteBernad, Sandor I., Vlad Socoliuc, Izabell Craciunescu, Rodica Turcu e Elena S. Bernad. "Field-Induced Agglomerations of Polyethylene-Glycol-Functionalized Nanoclusters: Rheological Behaviour and Optical Microscopy". Pharmaceutics 15, n.º 11 (10 de novembro de 2023): 2612. http://dx.doi.org/10.3390/pharmaceutics15112612.
Texto completo da fonteJia, Jun, e Fengyuan Sun. "Application of Polymer Nanocolloid Preparation in Stability Analysis of Motion Mechanics". Advances in Materials Science and Engineering 2022 (31 de agosto de 2022): 1–11. http://dx.doi.org/10.1155/2022/7260515.
Texto completo da fonteCecil, Adam J., John E. Payne, Luke T. Hawtrey, Ben King, Gerold A. Willing e Stuart J. Williams. "Nonlinear Agglomeration of Bimodal Colloids under Microgravity". Gravitational and Space Research 10, n.º 1 (1 de janeiro de 2022): 1–9. http://dx.doi.org/10.2478/gsr-2022-0001.
Texto completo da fonteIp, Alexander H., Amirreza Kiani, Illan J. Kramer, Oleksandr Voznyy, Hamidreza F. Movahed, Larissa Levina, Michael M. Adachi, Sjoerd Hoogland e Edward H. Sargent. "Infrared Colloidal Quantum Dot PhotovoltaicsviaCoupling Enhancement and Agglomeration Suppression". ACS Nano 9, n.º 9 (19 de agosto de 2015): 8833–42. http://dx.doi.org/10.1021/acsnano.5b02164.
Texto completo da fonteSolaimany-Nazar, Ali Reza, e Hassan Rahimi. "Investigation on Agglomeration−Fragmentation Processes in Colloidal Asphaltene Suspensions". Energy & Fuels 23, n.º 2 (19 de fevereiro de 2009): 967–74. http://dx.doi.org/10.1021/ef800728h.
Texto completo da fonteKim, Jin-Wook, e Timothy A. Kramer. "Improved models for fractal colloidal agglomeration: computationally efficient algorithms". Colloids and Surfaces A: Physicochemical and Engineering Aspects 253, n.º 1-3 (fevereiro de 2005): 33–49. http://dx.doi.org/10.1016/j.colsurfa.2004.10.101.
Texto completo da fonteTeses / dissertações sobre o assunto "Colloidal agglomeration"
Chaumeil, Florian. "Using DEM-CFD method at colloidal scale". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8066.
Texto completo da fonteO'Brien, Colleen S. "A Mathematical Model for Colloidal Aggregation". [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000161.
Texto completo da fonteYang, Zhengtao. "CHARACTERIZATION AND AQUEOUS COLLOIDAL PROCESSING OF TUNGSTEN NANO-POWDERS". Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2693.
Texto completo da fonteM.S.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Materials Science & Engr MSMSE
Venkataraman, Manoj. "THE EFFECT OF COLLOIDAL STABILITY ON THE HEAT TRANSFER CHARACTERISTICS OF NANOSILICA DISPERSED FLUIDS". Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3656.
Texto completo da fonteM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Ferri, Giulia. "Identification and study of relevant descriptors of the solid during the synthesis of boehmite". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG064.
Texto completo da fonteAn alumina catalyst carrier must have adequate mechanical and thermal properties, and promote an appropriate mass and heat transfer. These properties depend on the carrier texture, which is the result of its manufacturing process. Our study focuses on the peptization and kneading process, which involves the dispersion of boehmite powder in an acid solution. A base is then added to induce the agglomeration of dispersed boehmite particles. This process, performed under mixing, enables to tune the size and structure of the boehmite agglomerates that will build the solid catalyst carrier. This work aims at modeling the alumina solid structure depending on the physical-chemical parameters that drive the colloidal agglomeration when no hydrodynamic forces are present. In order to study the impact of pH, ionic strength and concentration on the coagulation kinetics, three experimental techniques are used: Dynamic Light Scattering (DLS), Small Angle X-Ray Scattering (SAXS) and Scanning Transmission Electron Microscopy (STEM). The results of the experimental data are interpreted in terms of the population-balance equation, where the size-structure relationship is given by a Brownian dynamics model. The results of the population-balance model are then used as inputs for a morphological agglomeration model, to simulate large volumes of the porous structure of the real alumina solid. Such a model is one of the new contributions of this work, and enables to compute textural properties of a boehmite grain
Jarray, Ahmed. "Mesoscopic modeling, experimental and thermodynamic approach for the prediction of agglomerates structures in granulation processes". Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15112/1/jarray.pdf.
Texto completo da fonteOberman, Glen James. "Mathematical modelling of the drying of sol gel microspheres". Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/49386/1/Glen_Oberman_Thesis.pdf.
Texto completo da fontePorkert, Sebastian. "Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219620.
Texto completo da fonteMovassaghi, Jorshari Razzi. "Simulation and network analysis of nanoparticles agglomeration and structure formation with application to fuel cell catalyst inks". Thesis, 2019. http://hdl.handle.net/1828/10897.
Texto completo da fonteGraduate
Porkert, Sebastian. "Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)". Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30179.
Texto completo da fonteCapítulos de livros sobre o assunto "Colloidal agglomeration"
Nicklas, Jan, Lisa Ditscherlein, Shyamal Roy, Stefan Sandfeld e Urs A. Peuker. "Microprocesses of Agglomeration, Hetero-coagulation and Particle Deposition of Poorly Wetted Surfaces in the Context of Metal Melt Filtration and Their Scale Up". In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 361–86. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_15.
Texto completo da fonteErnst, M., e M. Sommerfeld. "Resolved Numerical Simulation of Particle Agglomeration". In Colloid Process Engineering, 45–71. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15129-8_3.
Texto completo da fonteRoch, A., F. Moiny, R. N. Muller e P. Gillis. "Water Magnetic Relaxation in Superparamagnetic Colloid Suspensions: The Effect of Agglomeration". In Magnetic Resonance in Colloid and Interface Science, 383–92. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0534-0_33.
Texto completo da fonteBunker, Bruce C., e William H. Casey. "The Colloidal Chemistry of Oxides". In The Aqueous Chemistry of Oxides. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780199384259.003.0014.
Texto completo da fonteOyegbile, Benjamin A. "Fundamentals of flocculation and colloidal stability". In Optimization of Micro Processes in Fine Particle Agglomeration by Pelleting Flocculation, 7–22. CRC Press, 2016. http://dx.doi.org/10.1201/9781315671871-2.
Texto completo da fonteDe León Portilla, Paulina, Ana Lilia González Ronquillo e Enrique Sánchez Mora. "Theoretical and Experimental Study on the Functionalization Effect on the SERS Enhancement Factor of SiO2-Ag Composite Films". In Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97028.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Colloidal agglomeration"
Ghamari, Mohsen, e Ahmed Aboalhamayie. "Thermal Conductivity of Colloidal Suspensions of Jet Fuel and Carbon-Based Nanoparticles and its Effect on Evaporation Rate". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88618.
Texto completo da fonteChoi, Young Joon, Razzi Movassaghi Jorshari e Ned Djilali. "An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid". In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913183.
Texto completo da fonteYousuf, Hazzaz Bin, Seyed Hasan Hajiabi, Pouya Khalili e Mahmoud Khalifeh. "Hydrophobic Modification of Bentonite: Unravelling the Impacts of Aluminium Cation on Silica-Water Interface". In The Nordic Rheology Conference. University of Stavanger, 2024. http://dx.doi.org/10.31265/atnrs.774.
Texto completo da fonteMollick, Rahat, Nitin Nagarkar, Ford Loskill e Albert Ratner. "Studying Reultrasonication Effects on the Suspension Stability of Stored Nanofuels Based on Optical Measurements". In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112467.
Texto completo da fonteGutierrez, Gustavo, Juan Catan˜o e Oscar Perales-Perez. "Development of a Magnetocaloric Pump Using a Mn-Zn Ferrite Ferrofluid". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13784.
Texto completo da fonteKumar, Ravi Shankar, Muhammad Arif, Sikandar Kumar e Tushar Sharma. "Impact of Reservoir Salinity on Oil Recovery Using Surface-Modified Silica Nanofluid for Offshore Oilfield Applications". In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32365-ms.
Texto completo da fonteBarz, Dominik P. J., Michael J. Vogel e Paul H. Steen. "Generation of Electrokinetic Flow in a Doped Non-Polar Liquid". In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30258.
Texto completo da fonteIllera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez e D. Yogi Goswami. "Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.
Texto completo da fonteMortazavi, Farzam, e Debjyoti Banerjee. "Review of Molten Salt Nanofluids". In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7316.
Texto completo da fonteChigier, Norman. "Industrial Applications of Spray Technology". In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0776.
Texto completo da fonteRelatórios de organizações sobre o assunto "Colloidal agglomeration"
Hersman, L. Microbial effects on colloidal agglomeration. Office of Scientific and Technical Information (OSTI), novembro de 1995. http://dx.doi.org/10.2172/171273.
Texto completo da fonte