Siga este link para ver outros tipos de publicações sobre o tema: Cohomology of condensed groups.

Artigos de revistas sobre o tema "Cohomology of condensed groups"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cohomology of condensed groups".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rodrigues Jacinto, Joaquín, e Juan Rodríguez Camargo. "Solid locally analytic representations of 𝑝-adic Lie groups". Representation Theory of the American Mathematical Society 26, n.º 31 (31 de agosto de 2022): 962–1024. http://dx.doi.org/10.1090/ert/615.

Texto completo da fonte
Resumo:
We develop the theory of locally analytic representations of compact p p -adic Lie groups from the perspective of the theory of condensed mathematics of Clausen and Scholze. As an application, we generalise Lazard’s isomorphisms between continuous, locally analytic and Lie algebra cohomology to solid representations. We also prove a comparison result between the group cohomology of a solid representation and of its analytic vectors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Artusa, Marco. "Duality for condensed cohomology of the Weil group of a $p$-adic field". Documenta Mathematica 29, n.º 6 (26 de novembro de 2024): 1381–434. http://dx.doi.org/10.4171/dm/977.

Texto completo da fonte
Resumo:
We use the theory of Condensed Mathematics to build a condensed cohomology theory for the Weil group of a p -adic field. The cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gähler, Franz, e Johannes Kellendonk. "Cohomology groups for projection tilings of codimension 2". Materials Science and Engineering: A 294-296 (dezembro de 2000): 438–40. http://dx.doi.org/10.1016/s0921-5093(00)01171-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

FISHER, BENJI N., e DAVID A. RABSON. "Group Cohomology and Quasicrystals I: Classification of Two-Dimensional Space Groups". Ferroelectrics 305, n.º 1 (janeiro de 2004): 37–40. http://dx.doi.org/10.1080/00150190490462360.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Conduché, Daniel, Hvedri Inassaridze e Nick Inassaridze. "Modq cohomology and Tate–Vogel cohomology of groups". Journal of Pure and Applied Algebra 189, n.º 1-3 (maio de 2004): 61–87. http://dx.doi.org/10.1016/j.jpaa.2003.10.025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Inassaridze, H. "Non-Abelian Cohomology of Groups". gmj 4, n.º 4 (agosto de 1997): 313–31. http://dx.doi.org/10.1515/gmj.1997.313.

Texto completo da fonte
Resumo:
Abstract Following Guin's approach to non-abelian cohomology [Guin, Pure Appl. Algebra 50: 109–137, 1988] and, using the notion of a crossed bimodule, a second pointed set of cohomology is defined with coefficients in a crossed module, and Guin's six-term exact cohomology sequence is extended to a nine-term exact sequence of cohomology up to dimension 2.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Thomas, C. B. "COHOMOLOGY OF FINITE GROUPS". Bulletin of the London Mathematical Society 29, n.º 1 (janeiro de 1997): 121–23. http://dx.doi.org/10.1112/blms/29.1.121.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hiller, Howard. "Cohomology of Bieberbach groups". Mathematika 32, n.º 1 (junho de 1985): 55–59. http://dx.doi.org/10.1112/s002557930001086x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Huebschmann, Johannes. "Cohomology of metacyclic groups". Transactions of the American Mathematical Society 328, n.º 1 (1 de janeiro de 1991): 1–72. http://dx.doi.org/10.1090/s0002-9947-1991-1031239-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Pirashvili, Mariam. "Symmetric cohomology of groups". Journal of Algebra 509 (setembro de 2018): 397–418. http://dx.doi.org/10.1016/j.jalgebra.2018.05.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Concini, C. de, e M. Salvetti. "Cohomology of Artin Groups". Mathematical Research Letters 3, n.º 2 (1996): 293–97. http://dx.doi.org/10.4310/mrl.1996.v3.n2.a13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Bertuccioni, Inta. "Brauer groups and cohomology". Archiv der Mathematik 84, n.º 5 (maio de 2005): 406–11. http://dx.doi.org/10.1007/s00013-004-1202-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Dokuchaev, M., e M. Khrypchenko. "Partial cohomology of groups". Journal of Algebra 427 (abril de 2015): 142–82. http://dx.doi.org/10.1016/j.jalgebra.2014.11.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Salvetti, Mario. "Cohomology of Coxeter groups". Topology and its Applications 118, n.º 1-2 (fevereiro de 2002): 199–208. http://dx.doi.org/10.1016/s0166-8641(01)00051-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Puls, Michael J. "Group Cohomology and Lp-Cohomology of Finitely Generated Groups". Canadian Mathematical Bulletin 46, n.º 2 (1 de junho de 2003): 268–76. http://dx.doi.org/10.4153/cmb-2003-027-x.

Texto completo da fonte
Resumo:
AbstractLet G be a finitely generated, infinite group, let p > 1, and let Lp(G) denote the Banach space . In this paper we will study the first cohomology group of G with coefficients in Lp(G), and the first reduced Lp-cohomology space of G. Most of our results will be for a class of groups that contains all finitely generated, infinite nilpotent groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Covez, Simon. "On the conjectural Leibniz cohomology for groups". Journal of K-theory 10, n.º 3 (30 de novembro de 2012): 519–63. http://dx.doi.org/10.1017/is011011011jkt195.

Texto completo da fonte
Resumo:
AbstractThis article presents results which are consistent with conjectures about Leibniz (co)homology for discrete groups, due to J. L. Loday in 2003. We prove that rack cohomology has properties very close to the properties expected for the conjectural Leibniz cohomology. In particular, we prove the existence of a graded dendriform algebra structure on rack cohomology, and we construct a graded associative algebra morphism H•(−) → HR•(−) from group cohomology to rack cohomology which is injective for ● = 1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Pakianathan, Jonathan, e Sarah Witherspoon. "Hochschild cohomology and Linckelmann cohomology for blocks of finite groups". Journal of Pure and Applied Algebra 178, n.º 1 (fevereiro de 2003): 87–100. http://dx.doi.org/10.1016/s0022-4049(02)00189-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Concini, C. de, e M. Salvetti. "Cohomology of Coxeter groups and Artin groups". Mathematical Research Letters 7, n.º 2 (2000): 213–32. http://dx.doi.org/10.4310/mrl.2000.v7.n2.a7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Davis, Michael W., Jan Dymara, Tadeusz Januszkiewicz e Boris Okun. "WeightedL2–cohomology of Coxeter groups". Geometry & Topology 11, n.º 1 (24 de fevereiro de 2007): 47–138. http://dx.doi.org/10.2140/gt.2007.11.47.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Hiller, Howard. "Crystallography and Cohomology of Groups". American Mathematical Monthly 93, n.º 10 (dezembro de 1986): 765. http://dx.doi.org/10.2307/2322930.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bogomolov, Fedor, e Tihomir Petrov. "Unramified cohomology of alternating groups". Central European Journal of Mathematics 9, n.º 5 (5 de julho de 2011): 936–48. http://dx.doi.org/10.2478/s11533-011-0061-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kühnlein, Stefan. "Cohomology sets inside arithmetic groups". Acta Arithmetica 107, n.º 1 (2003): 27–33. http://dx.doi.org/10.4064/aa107-1-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Ginot, Grégory, e Ping Xu. "Cohomology of Lie $2$-groups". L’Enseignement Mathématique 55, n.º 3 (2009): 373–96. http://dx.doi.org/10.4171/lem/55-3-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Davesh MAULIK e Andrei OKOUNKOV. "Quantum groups and quantum cohomology". Astérisque 408 (2019): 1–212. http://dx.doi.org/10.24033/ast.1074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Lee, Kee-Young. "COHOMOLOGY AND TRIVIAL GOTTLIEB GROUPS". Communications of the Korean Mathematical Society 21, n.º 1 (1 de janeiro de 2006): 185–91. http://dx.doi.org/10.4134/ckms.2006.21.1.185.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Choi, Eun-Mi. "COHOMOLOGY GROUPS OF RADICAL EXTENSIONS". Journal of the Korean Mathematical Society 44, n.º 1 (31 de janeiro de 2007): 151–67. http://dx.doi.org/10.4134/jkms.2007.44.1.151.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Kabbaj, Noureddine, e Edward C. Turner. "Cohomology Rings of Aspherical Groups". Bulletin of the London Mathematical Society 20, n.º 1 (janeiro de 1988): 29–33. http://dx.doi.org/10.1112/blms/20.1.29.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Benson, D. J., e Jon F. Carlson. "The Cohomology of Extraspecial Groups". Bulletin of the London Mathematical Society 24, n.º 3 (maio de 1992): 209–35. http://dx.doi.org/10.1112/blms/24.3.209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Nair, Arvind. "Weighted Cohomology of Arithmetic Groups". Annals of Mathematics 150, n.º 1 (julho de 1999): 1. http://dx.doi.org/10.2307/121096.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mineyev, I. "Bounded Cohomology Characterizes Hyperbolic Groups". Quarterly Journal of Mathematics 53, n.º 1 (1 de março de 2002): 59–73. http://dx.doi.org/10.1093/qjmath/53.1.59.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Cegarra, A. M., e L. Fernández. "Cohomology of cofibred categorical groups". Journal of Pure and Applied Algebra 143, n.º 1-3 (novembro de 1999): 107–54. http://dx.doi.org/10.1016/s0022-4049(98)00109-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Arkhipov, S. M. "Semiinfinite Cohomology of Quantum Groups". Communications in Mathematical Physics 188, n.º 2 (1 de setembro de 1997): 379–405. http://dx.doi.org/10.1007/s002200050170.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kaneda, Masaharu, Nobuo Shimada, Michishige Tezuka e Nobuaki Yagita. "Cohomology of infinitesimal algebraic groups". Mathematische Zeitschrift 205, n.º 1 (setembro de 1990): 61–95. http://dx.doi.org/10.1007/bf02571225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Adem, A., e D. Karagueuzian. "Essential cohomology of finite groups". Commentarii Mathematici Helvetici 72, n.º 1 (maio de 1997): 101–9. http://dx.doi.org/10.1007/pl00000361.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Hiller, Howard. "Crystallography and Cohomology of Groups". American Mathematical Monthly 93, n.º 10 (dezembro de 1986): 765–79. http://dx.doi.org/10.1080/00029890.1986.11971943.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Linnell, P. A. "Cohomology of finite soluble groups". Journal of Algebra 107, n.º 1 (abril de 1987): 53–62. http://dx.doi.org/10.1016/0021-8693(87)90072-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Völklein, Helmut. "1-Cohomology of Chevalley groups". Journal of Algebra 127, n.º 2 (dezembro de 1989): 353–72. http://dx.doi.org/10.1016/0021-8693(89)90257-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Kim, Jae Moon. "Cohomology groups of cyclotomic units". Journal of Algebra 152, n.º 2 (novembro de 1992): 514–19. http://dx.doi.org/10.1016/0021-8693(92)90046-o.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Cegarra, A. M., J. M. García-Calcines e J. A. Ortega. "Cohomology of groups with operators". Homology, Homotopy and Applications 4, n.º 1 (2002): 1–23. http://dx.doi.org/10.4310/hha.2002.v4.n1.a1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hoshi, Akinari, Ming-chang Kang e Aiichi Yamasaki. "Degree three unramified cohomology groups". Journal of Algebra 458 (julho de 2016): 120–33. http://dx.doi.org/10.1016/j.jalgebra.2016.03.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Robinson, Derek J. S. "Cohomology of locally nilpotent groups". Journal of Pure and Applied Algebra 48, n.º 1-2 (setembro de 1987): 281–300. http://dx.doi.org/10.1016/0022-4049(87)90116-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Linnell, P. A., e U. Stammbach. "The cohomology ofp-constrained groups". Journal of Pure and Applied Algebra 49, n.º 3 (dezembro de 1987): 273–79. http://dx.doi.org/10.1016/0022-4049(87)90135-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Peterson, C., e N. Yagita. "Rational cohomology of Witt groups". Mathematische Zeitschrift 224, n.º 4 (18 de abril de 1997): 665–76. http://dx.doi.org/10.1007/pl00004594.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Totaro, Burt. "Cohomology of Semidirect Product Groups". Journal of Algebra 182, n.º 2 (junho de 1996): 469–75. http://dx.doi.org/10.1006/jabr.1996.0181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Opolka, H. "Group Extensions and Cohomology Groups". Journal of Algebra 156, n.º 1 (abril de 1993): 178–82. http://dx.doi.org/10.1006/jabr.1993.1068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Dupre, A. M. "Combinatorial Extension Cohomology I. Groups". Advances in Mathematics 106, n.º 1 (junho de 1994): 96–117. http://dx.doi.org/10.1006/aima.1994.1050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Cegarra, A. M., e A. R. Garzón. "Equivariant Brauer groups and cohomology". Journal of Algebra 296, n.º 1 (fevereiro de 2006): 56–74. http://dx.doi.org/10.1016/j.jalgebra.2005.11.032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Symonds, Peter. "On cohomology isomorphisms of groups". Journal of Algebra 313, n.º 2 (julho de 2007): 802–10. http://dx.doi.org/10.1016/j.jalgebra.2007.02.054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Seidel, Paul. "Formal groups and quantum cohomology". Geometry & Topology 27, n.º 8 (9 de novembro de 2023): 2937–3060. http://dx.doi.org/10.2140/gt.2023.27.2937.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

KYED, DAVID, e HENRIK DENSING PETERSEN. "POLYNOMIAL COHOMOLOGY AND POLYNOMIAL MAPS ON NILPOTENT GROUPS". Glasgow Mathematical Journal 62, n.º 3 (2 de outubro de 2019): 706–36. http://dx.doi.org/10.1017/s0017089519000429.

Texto completo da fonte
Resumo:
AbstractWe introduce a refined version of group cohomology and relate it to the space of polynomials on the group in question. We show that the polynomial cohomology with trivial coefficients admits a description in terms of ordinary cohomology with polynomial coefficients, and that the degree one polynomial cohomology with trivial coefficients admits a description directly in terms of polynomials. Lastly, we give a complete description of the polynomials on a connected, simply connected nilpotent Lie group by showing that these are exactly the maps that pull back to classical polynomials via the exponential map.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia