Literatura científica selecionada sobre o tema "Cohomology of condensed groups"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cohomology of condensed groups".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cohomology of condensed groups"
Rodrigues Jacinto, Joaquín, e Juan Rodríguez Camargo. "Solid locally analytic representations of 𝑝-adic Lie groups". Representation Theory of the American Mathematical Society 26, n.º 31 (31 de agosto de 2022): 962–1024. http://dx.doi.org/10.1090/ert/615.
Texto completo da fonteArtusa, Marco. "Duality for condensed cohomology of the Weil group of a $p$-adic field". Documenta Mathematica 29, n.º 6 (26 de novembro de 2024): 1381–434. http://dx.doi.org/10.4171/dm/977.
Texto completo da fonteGähler, Franz, e Johannes Kellendonk. "Cohomology groups for projection tilings of codimension 2". Materials Science and Engineering: A 294-296 (dezembro de 2000): 438–40. http://dx.doi.org/10.1016/s0921-5093(00)01171-0.
Texto completo da fonteFISHER, BENJI N., e DAVID A. RABSON. "Group Cohomology and Quasicrystals I: Classification of Two-Dimensional Space Groups". Ferroelectrics 305, n.º 1 (janeiro de 2004): 37–40. http://dx.doi.org/10.1080/00150190490462360.
Texto completo da fonteConduché, Daniel, Hvedri Inassaridze e Nick Inassaridze. "Modq cohomology and Tate–Vogel cohomology of groups". Journal of Pure and Applied Algebra 189, n.º 1-3 (maio de 2004): 61–87. http://dx.doi.org/10.1016/j.jpaa.2003.10.025.
Texto completo da fonteInassaridze, H. "Non-Abelian Cohomology of Groups". gmj 4, n.º 4 (agosto de 1997): 313–31. http://dx.doi.org/10.1515/gmj.1997.313.
Texto completo da fonteThomas, C. B. "COHOMOLOGY OF FINITE GROUPS". Bulletin of the London Mathematical Society 29, n.º 1 (janeiro de 1997): 121–23. http://dx.doi.org/10.1112/blms/29.1.121.
Texto completo da fonteHiller, Howard. "Cohomology of Bieberbach groups". Mathematika 32, n.º 1 (junho de 1985): 55–59. http://dx.doi.org/10.1112/s002557930001086x.
Texto completo da fonteHuebschmann, Johannes. "Cohomology of metacyclic groups". Transactions of the American Mathematical Society 328, n.º 1 (1 de janeiro de 1991): 1–72. http://dx.doi.org/10.1090/s0002-9947-1991-1031239-1.
Texto completo da fontePirashvili, Mariam. "Symmetric cohomology of groups". Journal of Algebra 509 (setembro de 2018): 397–418. http://dx.doi.org/10.1016/j.jalgebra.2018.05.020.
Texto completo da fonteTeses / dissertações sobre o assunto "Cohomology of condensed groups"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Texto completo da fonteThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Watson, Toni Aliza. "Twisted cohomology groups". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3929.
Texto completo da fonteThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Česnavičius, Kęstutis. "Selmer groups as flat cohomology groups". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90180.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined by the mod pm Galois representation A[pm]; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A is determined by A[pm] for all ... In the course of the argument we describe the flat cohomology group ... of the ring of integers of K with coefficients in the pm- torsion A[pm] of the Neron model of A by local conditions for p V E, compare them with the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[pm] for such p. Our method sharpens the relationship between Selpm A and ... which was observed by Mazur and continues to work for other isogenies 0 between abelian varieties over global fields provided that deg o is constrained appropriately. To illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number fields. Standard glueing techniques developed in the course of the proofs have applications to finite flat group schemes over global bases, permitting us to transfer many of the known local results to the global setting.
by Kęstutis Česnavičius.
Ph. D.
Clark, Jonathan Owen. "Cohomology of some finite groups". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Texto completo da fonteEastridge, Samuel Vance. "First l^2-Cohomology Groups". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52952.
Texto completo da fonteMaster of Science
QUADRELLI, CLAUDIO. "Cohomology of Absolute Galois Groups". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Texto completo da fonteLeary, Ian James. "The cohomology of certain finite groups". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386114.
Texto completo da fonteKim, Yunhyong. "Smooth cochain cohomology of loop groups". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621575.
Texto completo da fonteFoster-Greenwood, Briana A. "Hochschild Cohomology and Complex Reflection Groups". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149591/.
Texto completo da fonteAnwar, Muhammad F. "Representations and cohomology of algebraic groups". Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2032/.
Texto completo da fonteLivros sobre o assunto "Cohomology of condensed groups"
Adem, Alejandro, e R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7.
Texto completo da fonteAdem, Alejandro, e R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1.
Texto completo da fonteCogdell, James W., Günter Harder, Stephen Kudla e Freydoon Shahidi, eds. Cohomology of Arithmetic Groups. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0.
Texto completo da fonteJames, Milgram R., ed. Cohomology of finite groups. 2a ed. Berlin: Springer, 2004.
Encontre o texto completo da fonteJames, Milgram R., ed. Cohomology of finite groups. Berlin: Springer-Verlag, 1994.
Encontre o texto completo da fonteVermani, L. R. Lectures on cohomology of groups. Kurukshetra: Publication Bureau, Kurukshetra University, 1994.
Encontre o texto completo da fonteLang, Serge. Topics in Cohomology of Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092624.
Texto completo da fonteCarlson, Jon F., Lisa Townsley, Luis Valeri-Elizondo e Mucheng Zhang. Cohomology Rings of Finite Groups. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0215-7.
Texto completo da fonteMaulik, Davesh. Quantum groups and quantum cohomology. Paris: Société Mathématique de France, 2019.
Encontre o texto completo da fonteLang, Serge. Topics in cohomology of groups. Berlin: Springer, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cohomology of condensed groups"
Jantzen, Jens. "Cohomology". In Representations of Algebraic Groups, 49–64. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/107/04.
Texto completo da fonteBump, Daniel. "Cohomology of Grassmannians". In Lie Groups, 517–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_48.
Texto completo da fonteBump, Daniel. "Cohomology of Grassmannians". In Lie Groups, 428–37. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_50.
Texto completo da fonteMac Lane, Saunders. "Cohomology of Groups". In Homology, 103–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-62029-4_5.
Texto completo da fonteHilton, Peter J., e Urs Stammbach. "Cohomology of Groups". In A Course in Homological Algebra, 184–228. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4419-8566-8_7.
Texto completo da fonteHalter-Koch, Franz. "Cohomology of groups". In Class Field Theory and L Functions, 87–154. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429506574-2.
Texto completo da fonteWedhorn, Torsten. "Lie Groups". In Manifolds, Sheaves, and Cohomology, 123–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_6.
Texto completo da fonteKoch, Helmut. "Cohomology of Profinite Groups". In Springer Monographs in Mathematics, 21–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_4.
Texto completo da fonteHarari, David. "Cohomology of Profinite Groups". In Galois Cohomology and Class Field Theory, 65–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9_4.
Texto completo da fonteSerre, Jean-Pierre. "Cohomology of profinite groups". In Springer Monographs in Mathematics, 1–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59141-9_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cohomology of condensed groups"
Masuoka, Akira. "Hopf cohomology vanishing via approximation by Hochschild cohomology". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-8.
Texto completo da fonteBONANZINGA, V., e L. SORRENTI. "LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS". In Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0016.
Texto completo da fonteVenkataramana, T. N. "Cohomology of Arithmetic Groups and Representations". In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0100.
Texto completo da fonteKhalkhali, M., e B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Texto completo da fonteVENKATESH, AKSHAY. "COHOMOLOGY OF ARITHMETIC GROUPS - FIELDS MEDAL LECTURE". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0014.
Texto completo da fonteSAKANE, YUSUKE, e TAKUMI YAMADA. "HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS". In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.
Texto completo da fonteSOMA, TERUHIKO. "THE THIRD BOUNDED COHOMOLOGY AND KLEINIAN GROUPS". In Proceedings of the 37th Taniguchi Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814503921_0015.
Texto completo da fonteLI, JIAN-SHU, e JOACHIM SCHWERMER. "AUTOMORPHIC REPRESENTATIONS AND COHOMOLOGY OF ARITHMETIC GROUPS". In Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0005.
Texto completo da fonteSharygin, G. I. "Hopf-type Cyclic Cohomology via the Karoubi Operator". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-14.
Texto completo da fonteCallegaro, Filippo, Davide Moroni e Mario Salvetti. "Cohomology of Artin groups of type \tildeAn, Bn and applications". In Groups, homotopy and configuration spaces, in honour of Fred Cohen's 60th birthday. Mathematical Sciences Publishers, 2008. http://dx.doi.org/10.2140/gtm.2008.13.85.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cohomology of condensed groups"
Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.
Texto completo da fonte