Artigos de revistas sobre o tema "CoA ligases"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CoA ligases".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Villemur, Richard. "Coenzyme A ligases involved in anaerobic biodegradation of aromatic compounds". Canadian Journal of Microbiology 41, n.º 10 (1 de outubro de 1995): 855–61. http://dx.doi.org/10.1139/m95-118.
Texto completo da fonteNolte, Johannes Christoph, Marc Schürmann, Catherine-Louise Schepers, Elvira Vogel, Jan Hendrik Wübbeler e Alexander Steinbüchel. "Novel Characteristics of Succinate Coenzyme A (Succinate-CoA) Ligases: Conversion of Malate to Malyl-CoA and CoA-Thioester Formation of Succinate AnaloguesIn Vitro". Applied and Environmental Microbiology 80, n.º 1 (18 de outubro de 2013): 166–76. http://dx.doi.org/10.1128/aem.03075-13.
Texto completo da fonteLazo, O., M. Contreras e I. Singh. "Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases". Biochemistry 29, n.º 16 (24 de abril de 1990): 3981–86. http://dx.doi.org/10.1021/bi00468a027.
Texto completo da fonteSingh, Inderjit, Oscar Lazo e Miguel Contreras. "72 Topographical localization of Peroxisomal Acyl-CoA Ligases: Differential localization of Palmitoyl-CoA and Lignoceroyl-CoA Ligases". Pediatric Research 28, n.º 3 (setembro de 1990): 289. http://dx.doi.org/10.1203/00006450-199009000-00096.
Texto completo da fonteEl-Said Mohamed, Magdy. "Biochemical and Molecular Characterization of Phenylacetate-Coenzyme A Ligase, an Enzyme Catalyzing the First Step in Aerobic Metabolism of Phenylacetic Acid inAzoarcus evansii". Journal of Bacteriology 182, n.º 2 (15 de janeiro de 2000): 286–94. http://dx.doi.org/10.1128/jb.182.2.286-294.2000.
Texto completo da fonteLamas-Maceiras, Mónica, Inmaculada Vaca, Esther Rodríguez, Javier Casqueiro e Juan F. Martín. "Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase". Biochemical Journal 395, n.º 1 (15 de março de 2006): 147–55. http://dx.doi.org/10.1042/bj20051599.
Texto completo da fonteChen, Janice S., Brendan Colón, Brendon Dusel, Marika Ziesack, Jeffrey C. Way e Joseph P. Torella. "Production of fatty acids inRalstonia eutrophaH16 by engineeringβ-oxidation and carbon storage". PeerJ 3 (7 de dezembro de 2015): e1468. http://dx.doi.org/10.7717/peerj.1468.
Texto completo da fonteKnights, K., e C. Drogemuller. "Xenobiotic-CoA Ligases: Kinetic and Molecular Characterization". Current Drug Metabolism 1, n.º 1 (1 de julho de 2000): 49–66. http://dx.doi.org/10.2174/1389200003339261.
Texto completo da fonteBarragán, María J. López, Manuel Carmona, María T. Zamarro, Bärbel Thiele, Matthias Boll, Georg Fuchs, José L. García e Eduardo Díaz. "The bzd Gene Cluster, Coding for Anaerobic Benzoate Catabolism, in Azoarcus sp. Strain CIB". Journal of Bacteriology 186, n.º 17 (1 de setembro de 2004): 5762–74. http://dx.doi.org/10.1128/jb.186.17.5762-5774.2004.
Texto completo da fontePhilpott, Helena K., Pamela J. Thomas, David Tew, Doug E. Fuerst e Sarah L. Lovelock. "A versatile biosynthetic approach to amide bond formation". Green Chemistry 20, n.º 15 (2018): 3426–31. http://dx.doi.org/10.1039/c8gc01697f.
Texto completo da fonteSunstrum, Frederick G., Hannah L. Liu, Sharon Jancsik, Lufiani L. Madilao, Joerg Bohlmann e Sandra Irmisch. "4-Coumaroyl-CoA ligases in the biosynthesis of the anti-diabetic metabolite montbretin A". PLOS ONE 16, n.º 10 (7 de outubro de 2021): e0257478. http://dx.doi.org/10.1371/journal.pone.0257478.
Texto completo da fonteArora, Pooja, Archana Vats, Priti Saxena, Debasisa Mohanty e Rajesh S. Gokhale. "Promiscuous Fatty Acyl CoA Ligases Produce Acyl-CoA and Acyl-SNAC Precursors for Polyketide Biosynthesis". Journal of the American Chemical Society 127, n.º 26 (julho de 2005): 9388–89. http://dx.doi.org/10.1021/ja052991s.
Texto completo da fonteKlempien, Antje, Yasuhisa Kaminaga, Anthony Qualley, Dinesh A. Nagegowda, Joshua R. Widhalm, Irina Orlova, Ajit Kumar Shasany et al. "Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers". Plant Cell 24, n.º 5 (maio de 2012): 2015–30. http://dx.doi.org/10.1105/tpc.112.097519.
Texto completo da fonteSingh, Inderjit, Alok Bhushan, Nand Kishore Relan e Takashi Hashimoto. "Acyl-CoA ligases from rat brain microsomes: An immunochemical study". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 963, n.º 3 (dezembro de 1988): 509–14. http://dx.doi.org/10.1016/0005-2760(88)90319-0.
Texto completo da fonteColeman, James P., L. Lynn Hudson, Susan L. McKnight, John M. Farrow, M. Worth Calfee, Claire A. Lindsey e Everett C. Pesci. "Pseudomonas aeruginosa PqsA Is an Anthranilate-Coenzyme A Ligase". Journal of Bacteriology 190, n.º 4 (14 de dezembro de 2007): 1247–55. http://dx.doi.org/10.1128/jb.01140-07.
Texto completo da fonteKnights, Kathleen M., e Benjamin J. Roberts. "Xenobiotic acyl-CoA formation: evidence of kinetically distinct hepatic microsomal long-chain fatty acid and nafenopin-CoA ligases". Chemico-Biological Interactions 90, n.º 3 (março de 1994): 215–23. http://dx.doi.org/10.1016/0009-2797(94)90011-6.
Texto completo da fonteLuís, Paula B. M., Jos Ruiter, Lodewijk IJlst, Isabel Tavares de Almeida, Marinus Duran, Ronald J. A. Wanders e Margarida F. B. Silva. "Valproyl-CoA inhibits the activity of ATP- and GTP-dependent succinate:CoA ligases". Journal of Inherited Metabolic Disease 37, n.º 3 (24 de outubro de 2013): 353–57. http://dx.doi.org/10.1007/s10545-013-9657-4.
Texto completo da fontePeters, Franziska, Michael Rother e Matthias Boll. "Selenocysteine-Containing Proteins in Anaerobic Benzoate Metabolism of Desulfococcus multivorans". Journal of Bacteriology 186, n.º 7 (1 de abril de 2004): 2156–63. http://dx.doi.org/10.1128/jb.186.7.2156-2163.2004.
Texto completo da fonteBerger, Martine, Nelson L. Brock, Heiko Liesegang, Marco Dogs, Ines Preuth, Meinhard Simon, Jeroen S. Dickschat e Thorsten Brinkhoff. "Genetic Analysis of the Upper Phenylacetate Catabolic Pathway in the Production of Tropodithietic Acid by Phaeobacter gallaeciensis". Applied and Environmental Microbiology 78, n.º 10 (9 de março de 2012): 3539–51. http://dx.doi.org/10.1128/aem.07657-11.
Texto completo da fonteLavhale, Santosh G., Rakesh S. Joshi, Yashwant Kumar e Ashok P. Giri. "Functional insights into two Ocimum kilimandscharicum 4-coumarate-CoA ligases involved in phenylpropanoid biosynthesis". International Journal of Biological Macromolecules 181 (junho de 2021): 202–10. http://dx.doi.org/10.1016/j.ijbiomac.2021.03.129.
Texto completo da fonteKnights, Kathleen. "Long-Chain-Fatty-Acid CoA Ligases: The Key to Fatty Acid Activation, Formation of Xenobiotic Acyl-CoA Thioesters and Lipophilic Xenobiotic Conjugates". Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents 3, n.º 3 (1 de setembro de 2003): 235–44. http://dx.doi.org/10.2174/1568013033483384.
Texto completo da fonteGo, Maybelle Kho, Jeng Yeong Chow, Vivian Wing Ngar Cheung, Yan Ping Lim e Wen Shan Yew. "Establishing a Toolkit for Precursor-Directed Polyketide Biosynthesis: Exploring Substrate Promiscuities of Acid-CoA Ligases". Biochemistry 51, n.º 22 (22 de maio de 2012): 4568–79. http://dx.doi.org/10.1021/bi300425j.
Texto completo da fonteLazo, O., M. Contreras, Y. Yoshida, AK Singh, W. Stanley, M. Weise e I. Singh. "Cellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases." Journal of Lipid Research 31, n.º 4 (abril de 1990): 583–95. http://dx.doi.org/10.1016/s0022-2275(20)42826-3.
Texto completo da fonteVessey, Donald A., Jie Hu e Michael Kelley. "Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria". Journal of Biochemical Toxicology 11, n.º 2 (1996): 73–78. http://dx.doi.org/10.1002/(sici)1522-7146(1996)11:2<73::aid-jbt4>3.0.co;2-r.
Texto completo da fonteBabbitt, Patricia C., George L. Kenyon, Brian M. Martin, Hugues Charest, Michel Slyvestre, Jeffrey D. Scholten, Kai Hsuan Chang, Po Huang Liang e Debra Dunaway-Mariano. "Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases". Biochemistry 31, n.º 24 (junho de 1992): 5594–604. http://dx.doi.org/10.1021/bi00139a024.
Texto completo da fonteBaran, Marzena, Kimberly D. Grimes, Paul A. Sibbald, Peng Fu, Helena I. M. Boshoff, Daniel J. Wilson e Courtney C. Aldrich. "Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis". European Journal of Medicinal Chemistry 201 (setembro de 2020): 112408. http://dx.doi.org/10.1016/j.ejmech.2020.112408.
Texto completo da fonteXu, Jaiwei, Haifang Zhao e Tao Wang. "Suppression of retinal degeneration by two novel ERAD ubiquitin E3 ligases SORDD1/2 in Drosophila". PLOS Genetics 16, n.º 11 (2 de novembro de 2020): e1009172. http://dx.doi.org/10.1371/journal.pgen.1009172.
Texto completo da fonteMcInerney, Michael J., Lars Rohlin, Housna Mouttaki, UnMi Kim, Rebecca S. Krupp, Luis Rios-Hernandez, Jessica Sieber et al. "The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth". Proceedings of the National Academy of Sciences 104, n.º 18 (18 de abril de 2007): 7600–7605. http://dx.doi.org/10.1073/pnas.0610456104.
Texto completo da fonteDong, Yanpeng, Huiqian Du, Chunxu Gao, Ting Ma e Lu Feng. "Characterization of two long-chain fatty acid CoA ligases in the Gram-positive bacterium Geobacillus thermodenitrificans NG80-2". Microbiological Research 167, n.º 10 (dezembro de 2012): 602–7. http://dx.doi.org/10.1016/j.micres.2012.05.001.
Texto completo da fonteVessey, Donald A., Michael Kelley, Eva Lau e Shirley Z. Zhang. "Monovalent cation effects on the activity of the xenobiotic/medium-chain fatty acid: CoA ligases are substrate specific". Journal of Biochemical and Molecular Toxicology 14, n.º 3 (2000): 162–68. http://dx.doi.org/10.1002/(sici)1099-0461(2000)14:3<162::aid-jbt6>3.0.co;2-8.
Texto completo da fonteKrawiec, Brian J., Gerald J. Nystrom, Robert A. Frost, Leonard S. Jefferson e Charles H. Lang. "AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells". American Journal of Physiology-Endocrinology and Metabolism 292, n.º 6 (junho de 2007): E1555—E1567. http://dx.doi.org/10.1152/ajpendo.00622.2006.
Texto completo da fonteVessey, Donald A., e Michael Kelley. "Characterization of the monovalent and divalent cation requirements for the xenobiotic carboxylic acid: CoA ligases of bovine liver mitochondria". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1382, n.º 2 (fevereiro de 1998): 243–48. http://dx.doi.org/10.1016/s0167-4838(97)00163-5.
Texto completo da fonteLaw, Adrienne, e Martin J. Boulanger. "Defining a Structural and Kinetic Rationale for Paralogous Copies of Phenylacetate-CoA Ligases from the Cystic Fibrosis PathogenBurkholderia cenocepaciaJ2315". Journal of Biological Chemistry 286, n.º 17 (8 de março de 2011): 15577–85. http://dx.doi.org/10.1074/jbc.m111.219683.
Texto completo da fontevan der Sluis, Rencia. "Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B". Molecular Genetics and Genomics 293, n.º 5 (14 de junho de 2018): 1279–92. http://dx.doi.org/10.1007/s00438-018-1460-3.
Texto completo da fonteJo, Y., P. C. W. Lee, P. V. Sguigna e R. A. DeBose-Boyd. "Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8". Proceedings of the National Academy of Sciences 108, n.º 51 (5 de dezembro de 2011): 20503–8. http://dx.doi.org/10.1073/pnas.1112831108.
Texto completo da fonteWilhovsky, Sharon, Richard Gardner e Randolph Hampton. "HRDGene Dependence of Endoplasmic Reticulum-associated Degradation". Molecular Biology of the Cell 11, n.º 5 (maio de 2000): 1697–708. http://dx.doi.org/10.1091/mbc.11.5.1697.
Texto completo da fonteGao, Shuai, Xin-Yan Liu, Rong Ni, Jie Fu, Hui Tan, Ai-Xia Cheng e Hong-Xiang Lou. "Molecular cloning and functional analysis of 4-coumarate: CoA ligases from Marchantia paleacea and their roles in lignin and flavanone biosynthesis". PLOS ONE 19, n.º 1 (8 de janeiro de 2024): e0296079. http://dx.doi.org/10.1371/journal.pone.0296079.
Texto completo da fonteRoberts, B. J., e K. M. Knights. "Differential induction of rat hepatic microsomal and peroxisomal long-chain and nafenopin-CoA ligases by clofibric acid and di-(2-ethylhexyl)phthalate". Xenobiotica 25, n.º 5 (janeiro de 1995): 469–76. http://dx.doi.org/10.3109/00498259509061866.
Texto completo da fonteJo, Youngah, Isamu Z. Hartman e Russell A. DeBose-Boyd. "Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet–associated endoplasmic reticulum membranes". Molecular Biology of the Cell 24, n.º 3 (fevereiro de 2013): 169–83. http://dx.doi.org/10.1091/mbc.e12-07-0564.
Texto completo da fonteElsabrouty, Rania, Youngah Jo, Tammy T. Dinh e Russell A. DeBose-Boyd. "Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from membranes of permeabilized cells". Molecular Biology of the Cell 24, n.º 21 (novembro de 2013): 3300–3308. http://dx.doi.org/10.1091/mbc.e13-03-0157.
Texto completo da fonteViviani, V. R., R. A. Prado, D. R. Neves, D. Kato e J. A. Barbosa. "A Route from Darkness to Light: Emergence and Evolution of Luciferase Activity in AMP-CoA-Ligases Inferred from a Mealworm Luciferase-like Enzyme". Biochemistry 52, n.º 23 (30 de maio de 2013): 3963–73. http://dx.doi.org/10.1021/bi400141u.
Texto completo da fonteVessey, Donald A., Michael Kelley e Robert S. Warren. "Characterization of the CoA ligases of human liver mitochondria catalyzing the activation of short- and medium-chain fatty acids and xenobiotic carboxylic acids". Biochimica et Biophysica Acta (BBA) - General Subjects 1428, n.º 2-3 (agosto de 1999): 455–62. http://dx.doi.org/10.1016/s0304-4165(99)00088-4.
Texto completo da fonteBains, Jasleen, e Martin J. Boulanger. "Biochemical and Structural Characterization of the Paralogous Benzoate CoA Ligases from Burkholderia xenovorans LB400: Defining the Entry Point into the Novel Benzoate Oxidation (box) Pathway". Journal of Molecular Biology 373, n.º 4 (novembro de 2007): 965–77. http://dx.doi.org/10.1016/j.jmb.2007.08.008.
Texto completo da fonteRobinson, Serina L., Barbara R. Terlouw, Megan D. Smith, Sacha J. Pidot, Timothy P. Stinear, Marnix H. Medema e Lawrence P. Wackett. "Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic Nocardia". Journal of Biological Chemistry 295, n.º 44 (21 de agosto de 2020): 14826–39. http://dx.doi.org/10.1074/jbc.ra120.013528.
Texto completo da fonteErzurumlu, Yalcin, Deniz Catakli e Hatice Kubra Dogan. "Circadian Oscillation Pattern of Endoplasmic Reticulum Quality Control (ERQC) Components in Human Embryonic Kidney HEK293 Cells". Journal of Circadian Rhythms 21 (3 de abril de 2023): 1. http://dx.doi.org/10.5334/jcr.219.
Texto completo da fonteDu, Yuanxu, Shuo Gao, Hui Ma, Siqi Lu, Zhenhua Zhang e Mengmeng Zhao. "Catalytic Behavior of Cobalt Complexes Bearing Pyridine–Oxime Ligands in Isoprene Polymerization". Polymers 15, n.º 24 (10 de dezembro de 2023): 4660. http://dx.doi.org/10.3390/polym15244660.
Texto completo da fonteZhuang, Zhihao, Karl-Heinz Gartemann, Rudolf Eichenlaub e Debra Dunaway-Mariano. "Characterization of the 4-Hydroxybenzoyl-Coenzyme A Thioesterase from Arthrobacter sp. Strain SU". Applied and Environmental Microbiology 69, n.º 5 (maio de 2003): 2707–11. http://dx.doi.org/10.1128/aem.69.5.2707-2711.2003.
Texto completo da fonteHawkins, Aaron B., Michael W. W. Adams e Robert M. Kelly. "Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway". Applied and Environmental Microbiology 80, n.º 8 (14 de fevereiro de 2014): 2536–45. http://dx.doi.org/10.1128/aem.04146-13.
Texto completo da fonteWong, Gail A., James D. Bergstrom e John Edmond. "Acetoacetyl-CoA ligase activity in the isolated rat hepatocyte: Effects of 25-hydroxycholesterol and high density lipoprotein". Bioscience Reports 7, n.º 3 (1 de março de 1987): 217–24. http://dx.doi.org/10.1007/bf01124792.
Texto completo da fonteSchühle, Karola, Johannes Gescher, Ulrich Feil, Michael Paul, Martina Jahn, Hermann Schägger e Georg Fuchs. "Benzoate-Coenzyme A Ligase from Thauera aromatica: an Enzyme Acting in Anaerobic and Aerobic Pathways". Journal of Bacteriology 185, n.º 16 (15 de agosto de 2003): 4920–29. http://dx.doi.org/10.1128/jb.185.16.4920-4929.2003.
Texto completo da fonte