Artigos de revistas sobre o tema "CO2 reduction catalysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CO2 reduction catalysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, n.º 18 (28 de junho de 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Texto completo da fonteTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao e Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis". Catalysts 12, n.º 6 (2 de junho de 2022): 612. http://dx.doi.org/10.3390/catal12060612.
Texto completo da fonteSrivastava, Sumit, Manvender S. Dagur, Afsar Ali e Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds". Dalton Transactions 44, n.º 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Texto completo da fonteLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, Yuri Zhukovskii, Janis Kleperis, Ainars Knoks e Peteris Lesnicenoks. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations". Crystals 12, n.º 2 (28 de janeiro de 2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Texto completo da fontePetersen, Haley A., Tessa H. T. Myren e Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction". Inorganics 8, n.º 11 (11 de novembro de 2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Texto completo da fonteHahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments". ECS Meeting Abstracts MA2022-02, n.º 49 (9 de outubro de 2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Texto completo da fonteCao, Yanwei, Qiongyao Chen, Chaoren Shen e Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion". Molecules 24, n.º 11 (30 de maio de 2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Texto completo da fonteZhou, Yiying, Junxi Cai, Yuming Sun, Shuhan Jia, Zhonghuan Liu, Xu Tang, Bo Hu, Yue Zhang, Yan Yan e Zhi Zhu. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight". Catalysts 14, n.º 8 (20 de agosto de 2024): 546. http://dx.doi.org/10.3390/catal14080546.
Texto completo da fonteXue, Sensen, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma e Anmin Liu. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH". Catalysts 14, n.º 1 (20 de dezembro de 2023): 7. http://dx.doi.org/10.3390/catal14010007.
Texto completo da fonteHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig e Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis". Journal of the American Chemical Society 137, n.º 47 (18 de novembro de 2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Texto completo da fonteGeri, Jacob B., Joanna L. Ciatti e Nathaniel K. Szymczak. "Charge effects regulate reversible CO2 reduction catalysis". Chemical Communications 54, n.º 56 (2018): 7790–93. http://dx.doi.org/10.1039/c8cc04370a.
Texto completo da fonteJia, Mingwen, Qun Fan, Shizhen Liu, Jieshan Qiu e Zhenyu Sun. "Single-atom catalysis for electrochemical CO2 reduction". Current Opinion in Green and Sustainable Chemistry 16 (abril de 2019): 1–6. http://dx.doi.org/10.1016/j.cogsc.2018.11.002.
Texto completo da fonteGrills, David C., Mehmed Z. Ertem, Meaghan McKinnon, Ken T. Ngo e Jonathan Rochford. "Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts". Coordination Chemistry Reviews 374 (novembro de 2018): 173–217. http://dx.doi.org/10.1016/j.ccr.2018.05.022.
Texto completo da fonteXie, Wen-Jun, Olga M. Mulina, Alexander O. Terent’ev e Liang-Nian He. "Metal–Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid". Catalysts 13, n.º 7 (15 de julho de 2023): 1109. http://dx.doi.org/10.3390/catal13071109.
Texto completo da fonteCobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira e Erwin Reisner. "Using Enzymes to Understand and Control the Local Environment of Catalysis". ECS Meeting Abstracts MA2023-02, n.º 52 (22 de dezembro de 2023): 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.
Texto completo da fonteMarquart, Wijnand, Shaine Raseale, Gonzalo Prieto, Anna Zimina, Bidyut Bikash Sarma, Jan-Dierk Grunwaldt, Michael Claeys e Nico Fischer. "CO2 Reduction over Mo2C-Based Catalysts". ACS Catalysis 11, n.º 3 (20 de janeiro de 2021): 1624–39. http://dx.doi.org/10.1021/acscatal.0c05019.
Texto completo da fonteYuan, Zhimin, Xianhui Sun, Haiquan Wang, Xingling Zhao e Zaiyong Jiang. "Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction". Molecules 29, n.º 16 (16 de agosto de 2024): 3882. http://dx.doi.org/10.3390/molecules29163882.
Texto completo da fonteSt. John, Allison, Esraa Ahmad, Tianqi Jin e Gonghu Li. "(Invited) Single Atom Catalysts in Functionalized Carbon Nitride for Efficient Solar CO2 Reduction". ECS Meeting Abstracts MA2023-01, n.º 37 (28 de agosto de 2023): 2160. http://dx.doi.org/10.1149/ma2023-01372160mtgabs.
Texto completo da fonteXuemei Yang and Xiaohua Wang, Xuemei Yang and Xiaohua Wang. "Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation". Journal of the chemical society of pakistan 44, n.º 6 (2022): 576. http://dx.doi.org/10.52568/001180/jcsp/44.06.2022.
Texto completo da fonteHahn, Christopher, e Thomas F. Jaramillo. "Electrocatalysis for CO2 Reduction: Controlling Selectivity to Oxygenates and Multicarbon Products". ECS Meeting Abstracts MA2018-01, n.º 31 (13 de abril de 2018): 1832. http://dx.doi.org/10.1149/ma2018-01/31/1832.
Texto completo da fonteBuonsanti, Raffaella. "Developing the Chemistry of Colloidal Cu Nanocrystals to Advance the CO2 Electrochemical Reduction". CHIMIA International Journal for Chemistry 75, n.º 7 (25 de agosto de 2021): 598–604. http://dx.doi.org/10.2533/chimia.2021.598.
Texto completo da fonteHe, Liang-Nian, Xiao-Fang Liu, Xiao-Ya Li e Chang Qiao. "Transition-Metal-Free Catalysis for the Reductive Functionalization of CO2 with Amines". Synlett 29, n.º 05 (31 de janeiro de 2018): 548–55. http://dx.doi.org/10.1055/s-0036-1591533.
Texto completo da fonteAl-Omari, Abdulhadi, Zain Yamani e Ha Nguyen. "Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry". Molecules 23, n.º 11 (1 de novembro de 2018): 2835. http://dx.doi.org/10.3390/molecules23112835.
Texto completo da fonteSelva Ochoa, Angela Gabriela, Faezeh Habibzadeh e Elod Lajos Gyenge. "Metal-Organic Framework-Based Electrodes for Efficient CO2 Electroreduction to Formate at High Current Densities (up to 1 A cm−2)". ECS Meeting Abstracts MA2024-01, n.º 56 (9 de agosto de 2024): 2977. http://dx.doi.org/10.1149/ma2024-01562977mtgabs.
Texto completo da fonteRoldan Cuenya, Beatriz. "(Invited) Dynamics in the Electrocatalytic Reduction of CO2 ". ECS Meeting Abstracts MA2023-01, n.º 37 (28 de agosto de 2023): 2163. http://dx.doi.org/10.1149/ma2023-01372163mtgabs.
Texto completo da fonteCobb, Samuel J., Vivek M. Badiani, Azim M. Dharani, Andreas Wagner, Sónia Zacarias, Ana Rita Oliveira, Inês A. C. Pereira e Erwin Reisner. "Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis". Nature Chemistry 14, n.º 4 (28 de fevereiro de 2022): 417–24. http://dx.doi.org/10.1038/s41557-021-00880-2.
Texto completo da fonteKhajonvittayakul, Chalempol, Vut Tongnan, Suksun Amornraksa, Navadol Laosiripojana, Matthew Hartley e Unalome Wetwatana Hartley. "CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3". Catalysts 11, n.º 10 (26 de setembro de 2021): 1159. http://dx.doi.org/10.3390/catal11101159.
Texto completo da fonteKwak, Ja Hun, Libor Kovarik e János Szanyi. "Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts". ACS Catalysis 3, n.º 9 (16 de agosto de 2013): 2094–100. http://dx.doi.org/10.1021/cs4001392.
Texto completo da fonteFernández-Alvarez, Francisco J., Abdullah M. Aitani e Luis A. Oro. "Homogeneous catalytic reduction of CO2 with hydrosilanes". Catal. Sci. Technol. 4, n.º 3 (2014): 611–24. http://dx.doi.org/10.1039/c3cy00948c.
Texto completo da fonteGuo, Mengquan, Xiangxiang Li, Yuxin Huang, Linfa Li, Jixiao Li, Yiren Lu, Yanhong Xu e Lihong Zhang. "CO2-Induced Fibrous Zn Catalyst Promotes Electrochemical Reduction of CO2 to CO". Catalysts 11, n.º 4 (8 de abril de 2021): 477. http://dx.doi.org/10.3390/catal11040477.
Texto completo da fonteLi, Xiangxiang, Shuling Chang, Yanting Wang e Lihong Zhang. "Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction". Catalysts 12, n.º 5 (23 de abril de 2022): 479. http://dx.doi.org/10.3390/catal12050479.
Texto completo da fonteRahmati, Farnood, Negar Sabouhanian, Jacek Lipkowski e Aicheng Chen. "Synthesis of 3D Porous Cu Nanostructures on Ag Thin Film Using Dynamic Hydrogen Bubble Template for Electrochemical Conversion of CO2 to Ethanol". Nanomaterials 13, n.º 4 (20 de fevereiro de 2023): 778. http://dx.doi.org/10.3390/nano13040778.
Texto completo da fonteReisner, Erwin. "(Keynote) Reversible CO2 Reduction Electrocatalysis in Solar-Powered Chemistry". ECS Meeting Abstracts MA2023-02, n.º 52 (22 de dezembro de 2023): 2517. http://dx.doi.org/10.1149/ma2023-02522517mtgabs.
Texto completo da fonteLi, Qianwen, Mei Li, Shengbo Zhang, Xiao Liu, Xinli Zhu, Qingfeng Ge e Hua Wang. "Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO2 on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes". Catalysts 9, n.º 5 (22 de maio de 2019): 476. http://dx.doi.org/10.3390/catal9050476.
Texto completo da fonteCai, Fan, Dunfeng Gao, Hu Zhou, Guoxiong Wang, Ting He, Huimin Gong, Shu Miao, Fan Yang, Jianguo Wang e Xinhe Bao. "Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction". Chemical Science 8, n.º 4 (2017): 2569–73. http://dx.doi.org/10.1039/c6sc04966d.
Texto completo da fonteZhang, Hanguang, John Weiss, Luigi Osmieri e Piotr Zelenay. "M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction". ECS Meeting Abstracts MA2023-01, n.º 26 (28 de agosto de 2023): 1703. http://dx.doi.org/10.1149/ma2023-01261703mtgabs.
Texto completo da fonteTawil, Sumana, Hathaichanok Seelajaroen, Amorn Petsom, Niyazi Serdar Sariciftci e Patchanita Thamyongkit. "Clam-shaped cyclam-functionalized porphyrin for electrochemical reduction of carbon dioxide". Journal of Porphyrins and Phthalocyanines 23, n.º 04n05 (abril de 2019): 453–61. http://dx.doi.org/10.1142/s1088424619500548.
Texto completo da fonteManan, Wan Nabilah, Wan Nor Roslam Wan Isahak e Zahira Yaakob. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review". Catalysts 12, n.º 5 (19 de abril de 2022): 452. http://dx.doi.org/10.3390/catal12050452.
Texto completo da fonteCui, Yan, Pengxiang Ge, Mindong Chen e Leilei Xu. "Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2". Catalysts 12, n.º 4 (24 de março de 2022): 372. http://dx.doi.org/10.3390/catal12040372.
Texto completo da fonteTian, Pengfei, Bo Zhang, Jiacheng Chen, Jing Zhang, Libei Huang, Ruquan Ye, Bo Bao e Minghui Zhu. "Curvature-induced electronic tuning of molecular catalysts for CO2 reduction". Catalysis Science & Technology 11, n.º 7 (2021): 2491–96. http://dx.doi.org/10.1039/d0cy01589j.
Texto completo da fonteWang, Luhui, Junang Hu, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao e Chengyang Zhang. "Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation". Catalysts 10, n.º 5 (8 de maio de 2020): 523. http://dx.doi.org/10.3390/catal10050523.
Texto completo da fonteDharmasaroja, Nichthima, Tanakorn Ratana, Sabaithip Tungkamani, Thana Sornchamni, David S. A. Simakov e Monrudee Phongaksorn. "The Effects of CeO2 and Co Doping on the Properties and the Performance of the Ni/Al2O3-MgO Catalyst for the Combined Steam and CO2 Reforming of Methane Using Ultra-Low Steam to Carbon Ratio". Catalysts 10, n.º 12 (11 de dezembro de 2020): 1450. http://dx.doi.org/10.3390/catal10121450.
Texto completo da fonteHong, Xiaolei, Haiyan Zhu, Dianchen Du, Quanshen Zhang e Yawei Li. "Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2". Catalysts 13, n.º 2 (9 de fevereiro de 2023): 376. http://dx.doi.org/10.3390/catal13020376.
Texto completo da fonteLeung, Chi-Fai, e Pui-Yu Ho. "Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock". Catalysts 9, n.º 9 (10 de setembro de 2019): 760. http://dx.doi.org/10.3390/catal9090760.
Texto completo da fonteLiu, Di-Jia. "(Invited) Understanding the Electrocatalytic Mechanisms of Oxygen and Carbon Dioxide Reduction Reactions". ECS Meeting Abstracts MA2022-01, n.º 35 (7 de julho de 2022): 1468. http://dx.doi.org/10.1149/ma2022-01351468mtgabs.
Texto completo da fonteCai, Fan, Dunfeng Gao, Hu Zhou, Guoxiong Wang, Ting He, Huimin Gong, Shu Miao, Fan Yang, Jianguo Wang e Xinhe Bao. "Correction: Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction". Chemical Science 8, n.º 4 (2017): 3277. http://dx.doi.org/10.1039/c7sc90011b.
Texto completo da fonteChen, Pengfei, Yiao Huang, Zuhao Shi, Xingzhu Chen e Neng Li. "Improving the Catalytic CO2 Reduction on Cs2AgBiBr6 by Halide Defect Engineering: A DFT Study". Materials 14, n.º 10 (11 de maio de 2021): 2469. http://dx.doi.org/10.3390/ma14102469.
Texto completo da fonteWang, Nannan, Wenbin Jiang, Jing Yang, Haisong Feng, Youbin Zheng, Sheng Wang, Bofan Li et al. "Contact-electro-catalytic CO2 reduction from ambient air". Nature Communications 15, n.º 1 (13 de julho de 2024). http://dx.doi.org/10.1038/s41467-024-50118-1.
Texto completo da fonteYun, Ruirui, Beibei Zhang, Ruiming Xu, Shichang Song, Junjie Mao e Zhaoxu Wang. "Atomically Dispersed Copper Catalysts for Highly Selective CO2 Reduction". Inorganic Chemistry Frontiers, 2022. http://dx.doi.org/10.1039/d2qi02288e.
Texto completo da fonteWang, Hongming, Liming Hong, Xian Liu, Baozhu Chi e Guomin Xia. "Diatomic Molecule Catalysts toward Synergistic Electrocatalytic Carbon Dioxide Reduction". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta09831h.
Texto completo da fonte