Artigos de revistas sobre o tema "CO2 reduction catalysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CO2 reduction catalysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis." Synthesis 50, no. 18 (2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Texto completo da fonteTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao, and Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis." Catalysts 12, no. 6 (2022): 612. http://dx.doi.org/10.3390/catal12060612.
Texto completo da fonteSrivastava, Sumit, Manvender S. Dagur, Afsar Ali, and Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds." Dalton Transactions 44, no. 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Texto completo da fonteLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, et al. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations." Crystals 12, no. 2 (2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Texto completo da fontePetersen, Haley A., Tessa H. T. Myren, and Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction." Inorganics 8, no. 11 (2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Texto completo da fonteHahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments." ECS Meeting Abstracts MA2022-02, no. 49 (2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Texto completo da fonteCao, Yanwei, Qiongyao Chen, Chaoren Shen, and Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion." Molecules 24, no. 11 (2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Texto completo da fonteZhou, Yiying, Junxi Cai, Yuming Sun, et al. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight." Catalysts 14, no. 8 (2024): 546. http://dx.doi.org/10.3390/catal14080546.
Texto completo da fonteXue, Sensen, Xingyou Liang, Qing Zhang, et al. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH." Catalysts 14, no. 1 (2023): 7. http://dx.doi.org/10.3390/catal14010007.
Texto completo da fonteHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig, and Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis." Journal of the American Chemical Society 137, no. 47 (2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Texto completo da fonteGeri, Jacob B., Joanna L. Ciatti, and Nathaniel K. Szymczak. "Charge effects regulate reversible CO2 reduction catalysis." Chemical Communications 54, no. 56 (2018): 7790–93. http://dx.doi.org/10.1039/c8cc04370a.
Texto completo da fonteJia, Mingwen, Qun Fan, Shizhen Liu, Jieshan Qiu, and Zhenyu Sun. "Single-atom catalysis for electrochemical CO2 reduction." Current Opinion in Green and Sustainable Chemistry 16 (April 2019): 1–6. http://dx.doi.org/10.1016/j.cogsc.2018.11.002.
Texto completo da fonteGrills, David C., Mehmed Z. Ertem, Meaghan McKinnon, Ken T. Ngo, and Jonathan Rochford. "Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts." Coordination Chemistry Reviews 374 (November 2018): 173–217. http://dx.doi.org/10.1016/j.ccr.2018.05.022.
Texto completo da fonteXie, Wen-Jun, Olga M. Mulina, Alexander O. Terent’ev, and Liang-Nian He. "Metal–Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid." Catalysts 13, no. 7 (2023): 1109. http://dx.doi.org/10.3390/catal13071109.
Texto completo da fonteCobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira, and Erwin Reisner. "Using Enzymes to Understand and Control the Local Environment of Catalysis." ECS Meeting Abstracts MA2023-02, no. 52 (2023): 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.
Texto completo da fonteMarquart, Wijnand, Shaine Raseale, Gonzalo Prieto, et al. "CO2 Reduction over Mo2C-Based Catalysts." ACS Catalysis 11, no. 3 (2021): 1624–39. http://dx.doi.org/10.1021/acscatal.0c05019.
Texto completo da fonteYuan, Zhimin, Xianhui Sun, Haiquan Wang, Xingling Zhao, and Zaiyong Jiang. "Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction." Molecules 29, no. 16 (2024): 3882. http://dx.doi.org/10.3390/molecules29163882.
Texto completo da fonteSt. John, Allison, Esraa Ahmad, Tianqi Jin, and Gonghu Li. "(Invited) Single Atom Catalysts in Functionalized Carbon Nitride for Efficient Solar CO2 Reduction." ECS Meeting Abstracts MA2023-01, no. 37 (2023): 2160. http://dx.doi.org/10.1149/ma2023-01372160mtgabs.
Texto completo da fonteXuemei Yang and Xiaohua Wang, Xuemei Yang and Xiaohua Wang. "Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation." Journal of the chemical society of pakistan 44, no. 6 (2022): 576. http://dx.doi.org/10.52568/001180/jcsp/44.06.2022.
Texto completo da fonteHahn, Christopher, and Thomas F. Jaramillo. "Electrocatalysis for CO2 Reduction: Controlling Selectivity to Oxygenates and Multicarbon Products." ECS Meeting Abstracts MA2018-01, no. 31 (2018): 1832. http://dx.doi.org/10.1149/ma2018-01/31/1832.
Texto completo da fonteBuonsanti, Raffaella. "Developing the Chemistry of Colloidal Cu Nanocrystals to Advance the CO2 Electrochemical Reduction." CHIMIA International Journal for Chemistry 75, no. 7 (2021): 598–604. http://dx.doi.org/10.2533/chimia.2021.598.
Texto completo da fonteHe, Liang-Nian, Xiao-Fang Liu, Xiao-Ya Li, and Chang Qiao. "Transition-Metal-Free Catalysis for the Reductive Functionalization of CO2 with Amines." Synlett 29, no. 05 (2018): 548–55. http://dx.doi.org/10.1055/s-0036-1591533.
Texto completo da fonteAl-Omari, Abdulhadi, Zain Yamani, and Ha Nguyen. "Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry." Molecules 23, no. 11 (2018): 2835. http://dx.doi.org/10.3390/molecules23112835.
Texto completo da fonteSelva Ochoa, Angela Gabriela, Faezeh Habibzadeh, and Elod Lajos Gyenge. "Metal-Organic Framework-Based Electrodes for Efficient CO2 Electroreduction to Formate at High Current Densities (up to 1 A cm−2)." ECS Meeting Abstracts MA2024-01, no. 56 (2024): 2977. http://dx.doi.org/10.1149/ma2024-01562977mtgabs.
Texto completo da fonteRoldan Cuenya, Beatriz. "(Invited) Dynamics in the Electrocatalytic Reduction of CO2 ." ECS Meeting Abstracts MA2023-01, no. 37 (2023): 2163. http://dx.doi.org/10.1149/ma2023-01372163mtgabs.
Texto completo da fonteCobb, Samuel J., Vivek M. Badiani, Azim M. Dharani, et al. "Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis." Nature Chemistry 14, no. 4 (2022): 417–24. http://dx.doi.org/10.1038/s41557-021-00880-2.
Texto completo da fonteKhajonvittayakul, Chalempol, Vut Tongnan, Suksun Amornraksa, Navadol Laosiripojana, Matthew Hartley, and Unalome Wetwatana Hartley. "CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3." Catalysts 11, no. 10 (2021): 1159. http://dx.doi.org/10.3390/catal11101159.
Texto completo da fonteKwak, Ja Hun, Libor Kovarik, and János Szanyi. "Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts." ACS Catalysis 3, no. 9 (2013): 2094–100. http://dx.doi.org/10.1021/cs4001392.
Texto completo da fonteFernández-Alvarez, Francisco J., Abdullah M. Aitani, and Luis A. Oro. "Homogeneous catalytic reduction of CO2 with hydrosilanes." Catal. Sci. Technol. 4, no. 3 (2014): 611–24. http://dx.doi.org/10.1039/c3cy00948c.
Texto completo da fonteGuo, Mengquan, Xiangxiang Li, Yuxin Huang, et al. "CO2-Induced Fibrous Zn Catalyst Promotes Electrochemical Reduction of CO2 to CO." Catalysts 11, no. 4 (2021): 477. http://dx.doi.org/10.3390/catal11040477.
Texto completo da fonteLi, Xiangxiang, Shuling Chang, Yanting Wang, and Lihong Zhang. "Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction." Catalysts 12, no. 5 (2022): 479. http://dx.doi.org/10.3390/catal12050479.
Texto completo da fonteRahmati, Farnood, Negar Sabouhanian, Jacek Lipkowski, and Aicheng Chen. "Synthesis of 3D Porous Cu Nanostructures on Ag Thin Film Using Dynamic Hydrogen Bubble Template for Electrochemical Conversion of CO2 to Ethanol." Nanomaterials 13, no. 4 (2023): 778. http://dx.doi.org/10.3390/nano13040778.
Texto completo da fonteReisner, Erwin. "(Keynote) Reversible CO2 Reduction Electrocatalysis in Solar-Powered Chemistry." ECS Meeting Abstracts MA2023-02, no. 52 (2023): 2517. http://dx.doi.org/10.1149/ma2023-02522517mtgabs.
Texto completo da fonteLi, Qianwen, Mei Li, Shengbo Zhang, et al. "Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO2 on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes." Catalysts 9, no. 5 (2019): 476. http://dx.doi.org/10.3390/catal9050476.
Texto completo da fonteCai, Fan, Dunfeng Gao, Hu Zhou, et al. "Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction." Chemical Science 8, no. 4 (2017): 2569–73. http://dx.doi.org/10.1039/c6sc04966d.
Texto completo da fonteZhang, Hanguang, John Weiss, Luigi Osmieri, and Piotr Zelenay. "M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction." ECS Meeting Abstracts MA2023-01, no. 26 (2023): 1703. http://dx.doi.org/10.1149/ma2023-01261703mtgabs.
Texto completo da fonteTawil, Sumana, Hathaichanok Seelajaroen, Amorn Petsom, Niyazi Serdar Sariciftci, and Patchanita Thamyongkit. "Clam-shaped cyclam-functionalized porphyrin for electrochemical reduction of carbon dioxide." Journal of Porphyrins and Phthalocyanines 23, no. 04n05 (2019): 453–61. http://dx.doi.org/10.1142/s1088424619500548.
Texto completo da fonteManan, Wan Nabilah, Wan Nor Roslam Wan Isahak, and Zahira Yaakob. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review." Catalysts 12, no. 5 (2022): 452. http://dx.doi.org/10.3390/catal12050452.
Texto completo da fonteCui, Yan, Pengxiang Ge, Mindong Chen, and Leilei Xu. "Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2." Catalysts 12, no. 4 (2022): 372. http://dx.doi.org/10.3390/catal12040372.
Texto completo da fonteTian, Pengfei, Bo Zhang, Jiacheng Chen, et al. "Curvature-induced electronic tuning of molecular catalysts for CO2 reduction." Catalysis Science & Technology 11, no. 7 (2021): 2491–96. http://dx.doi.org/10.1039/d0cy01589j.
Texto completo da fonteWang, Luhui, Junang Hu, Hui Liu, et al. "Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation." Catalysts 10, no. 5 (2020): 523. http://dx.doi.org/10.3390/catal10050523.
Texto completo da fonteDharmasaroja, Nichthima, Tanakorn Ratana, Sabaithip Tungkamani, Thana Sornchamni, David S. A. Simakov, and Monrudee Phongaksorn. "The Effects of CeO2 and Co Doping on the Properties and the Performance of the Ni/Al2O3-MgO Catalyst for the Combined Steam and CO2 Reforming of Methane Using Ultra-Low Steam to Carbon Ratio." Catalysts 10, no. 12 (2020): 1450. http://dx.doi.org/10.3390/catal10121450.
Texto completo da fonteHong, Xiaolei, Haiyan Zhu, Dianchen Du, Quanshen Zhang, and Yawei Li. "Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2." Catalysts 13, no. 2 (2023): 376. http://dx.doi.org/10.3390/catal13020376.
Texto completo da fonteLeung, Chi-Fai, and Pui-Yu Ho. "Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock." Catalysts 9, no. 9 (2019): 760. http://dx.doi.org/10.3390/catal9090760.
Texto completo da fonteLiu, Di-Jia. "(Invited) Understanding the Electrocatalytic Mechanisms of Oxygen and Carbon Dioxide Reduction Reactions." ECS Meeting Abstracts MA2022-01, no. 35 (2022): 1468. http://dx.doi.org/10.1149/ma2022-01351468mtgabs.
Texto completo da fonteCai, Fan, Dunfeng Gao, Hu Zhou, et al. "Correction: Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction." Chemical Science 8, no. 4 (2017): 3277. http://dx.doi.org/10.1039/c7sc90011b.
Texto completo da fonteChen, Pengfei, Yiao Huang, Zuhao Shi, Xingzhu Chen, and Neng Li. "Improving the Catalytic CO2 Reduction on Cs2AgBiBr6 by Halide Defect Engineering: A DFT Study." Materials 14, no. 10 (2021): 2469. http://dx.doi.org/10.3390/ma14102469.
Texto completo da fonteWang, Nannan, Wenbin Jiang, Jing Yang, et al. "Contact-electro-catalytic CO2 reduction from ambient air." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-50118-1.
Texto completo da fonteYun, Ruirui, Beibei Zhang, Ruiming Xu, Shichang Song, Junjie Mao, and Zhaoxu Wang. "Atomically Dispersed Copper Catalysts for Highly Selective CO2 Reduction." Inorganic Chemistry Frontiers, 2022. http://dx.doi.org/10.1039/d2qi02288e.
Texto completo da fonteWang, Hongming, Liming Hong, Xian Liu, Baozhu Chi, and Guomin Xia. "Diatomic Molecule Catalysts toward Synergistic Electrocatalytic Carbon Dioxide Reduction." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta09831h.
Texto completo da fonte