Artigos de revistas sobre o tema "CO2 adsorption and separation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CO2 adsorption and separation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yan, Junzhi, Yuming Sun, Junxi Cai, Ming Cai, Bo Hu, Yan Yan, Yue Zhang e Xu Tang. "Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight". Catalysts 14, n.º 9 (6 de setembro de 2024): 599. http://dx.doi.org/10.3390/catal14090599.
Texto completo da fonteHasegawa, Yasuhisa, Mayumi Natsui, Chie Abe, Ayumi Ikeda e Sean-Thomas B. Lundin. "Estimation of CO2 Separation Performances through CHA-Type Zeolite Membranes Using Molecular Simulation". Membranes 13, n.º 1 (3 de janeiro de 2023): 60. http://dx.doi.org/10.3390/membranes13010060.
Texto completo da fonteLyu, Weifeng, Linghui Sun, Lu Wang, Zemin Ji, Sainan Zhou, Yong Chen e Xiaoqing Lu. "Nitrogen Atom-Doped Layered Graphene for High-Performance CO2/N2 Adsorption and Separation". Energies 15, n.º 10 (18 de maio de 2022): 3713. http://dx.doi.org/10.3390/en15103713.
Texto completo da fonteJingyi Shan, Jingyi Shan, Xiangling Wang Xiangling Wang, Junkai Wang Junkai Wang, Shixuan Zhang Shixuan Zhang e Qianku Hu and Aiguo Zhou Qianku Hu and Aiguo Zhou. "Electric Field Controlled Separation and Capture of CO2 over S-Doped Graphene: A First-Principles Calculation". Journal of the chemical society of pakistan 43, n.º 6 (2021): 623. http://dx.doi.org/10.52568/000964/jcsp/43.06.2021.
Texto completo da fonteHernández, Miguel Ángel, Karla Quiroz-Estrada, Gabriela I. Hernandez-Salgado, Roberto Ignacio Portillo, Juana Deisy Santamaría-Juárez, Ma de los Ángeles Velasco, Efraín Rubio e Vitalii Petranovskii. "Nanoporosity and Isosteric Enthalpy of Adsorption of CH4, H2, and CO2 on Natural Chabazite and Exchanged". Separations 9, n.º 6 (10 de junho de 2022): 150. http://dx.doi.org/10.3390/separations9060150.
Texto completo da fonteWan, Yinji, Yefan Miao, Ruiqin Zhong e Ruqiang Zou. "High-Selective CO2 Capture in Amine-Decorated Al-MOFs". Nanomaterials 12, n.º 22 (17 de novembro de 2022): 4056. http://dx.doi.org/10.3390/nano12224056.
Texto completo da fonteYusubov, F. V., I. A. Aliyev e S. N. Guliyeva. "Study of adsorption separation of gas mixtures under non-stationary conditions". Theoretical and Applied Ecology, n.º 2 (25 de junho de 2024): 101–7. http://dx.doi.org/10.25750/1995-4301-2024-2-101-107.
Texto completo da fonteYang, Lingzhi, Wenpeng Xie, Qiuju Fu, Liting Yan, Shuo Zhang, Huimin Jiang, Liangjun Li et al. "Highly Selective Separation of C2H2/CO2 and C2H2/C2H4 in an N-Rich Cage-Based Microporous Metal-Organic Framework". Adsorption Science & Technology 2023 (1 de março de 2023): 1–9. http://dx.doi.org/10.1155/2023/4740672.
Texto completo da fonteLi, Yao, Shiying Wang, Binbin Wang, Yan Wang e Jianping Wei. "Sustainable Biomass Glucose-Derived Porous Carbon Spheres with High Nitrogen Doping: As a Promising Adsorbent for CO2/CH4/N2 Adsorptive Separation". Nanomaterials 10, n.º 1 (19 de janeiro de 2020): 174. http://dx.doi.org/10.3390/nano10010174.
Texto completo da fonteIsmail, Marhaina, Mohamad Azmi Bustam, Nor Ernie Fatriyah Kari e Yin Fong Yeong. "Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-gallate)". Molecules 28, n.º 7 (28 de março de 2023): 3016. http://dx.doi.org/10.3390/molecules28073016.
Texto completo da fonteRodriguez Acevedo, Elizabeth, Farid B. Cortés, Camilo A. Franco, Francisco Carrasco-Marín, Agustín F. Pérez-Cadenas, Vanessa Fierro, Alain Celzard, Sébastien Schaefer e Agustin Cardona Molina. "An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres". Materials 12, n.º 13 (28 de junho de 2019): 2088. http://dx.doi.org/10.3390/ma12132088.
Texto completo da fonteWang, Shiqing, Xu Jiang, Yutong Wang, Jiaxin Liu, Xiaolong Qiu, Lianbo Liu, Shiwang Gao, Xiong Yang, Jing Ma e Chuanzhao Zhang. "Molecular Simulation of Adsorption of CO2 from a Combustion Exhaust Mixture of Zeolites with Different Topological Structures". Processes 12, n.º 12 (2 de dezembro de 2024): 2730. https://doi.org/10.3390/pr12122730.
Texto completo da fonteHuang, Hengcong, Luyao Wang, Xiaoyu Zhang, Hongshuo Zhao e Yifan Gu. "CO2-Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review". Clean Technologies 5, n.º 1 (20 de dezembro de 2022): 1–24. http://dx.doi.org/10.3390/cleantechnol5010001.
Texto completo da fonteJian, Weiwei, Qiuyan Hai, Adili Youlidaxi, Tianqiang Liu, Danzhu Ma e Fengrui Jia. "Modification of Copper Benzene-1,3,5-tricarboxy Late (Cu-BTC) Composites with Multiwalled Carbon Nanotubes and Amino Groups for Enhanced CO2/CH4 Selective Adsorption Performance and Water Stability". Processes 12, n.º 4 (7 de abril de 2024): 745. http://dx.doi.org/10.3390/pr12040745.
Texto completo da fonteJin, Xin, Hui Jiang, Yi Chen, Xin Han, Ken Sun, Linlin Shi, Xin-Qi Hao e Mao-Ping Song. "A Cavity-Tailored Metal-Organic Tetrahedral Nanocage and Gas Adsorption Property". Nanomaterials 12, n.º 24 (9 de dezembro de 2022): 4402. http://dx.doi.org/10.3390/nano12244402.
Texto completo da fonteSelmert, Victor, Ansgar Kretzschmar, Hans Kungl, Hermann Tempel e Rüdiger-A. Eichel. "Breakthrough analysis of the CO2/CH4 separation on electrospun carbon nanofibers". Adsorption 30, n.º 1 (janeiro de 2024): 107–19. http://dx.doi.org/10.1007/s10450-023-00435-6.
Texto completo da fonteBayati, Behrouz, Asma Ghorbani, Kamran Ghasemzadeh, Adolfo Iulianelli e Angelo Basile. "Study on the Separation of H2 from CO2 Using a ZIF-8 Membrane by Molecular Simulation and Maxwell-Stefan Model". Molecules 24, n.º 23 (28 de novembro de 2019): 4350. http://dx.doi.org/10.3390/molecules24234350.
Texto completo da fonteChakraborty, Anindita, Syamantak Roy, Muthusamy Eswaramoorthy e Tapas Kumar Maji. "Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4". Journal of Materials Chemistry A 5, n.º 18 (2017): 8423–30. http://dx.doi.org/10.1039/c6ta09886j.
Texto completo da fonteMiricioiu, Marius Gheorghe, Anca Zaharioiu, Simona Oancea, Felicia Bucura, Maria Simona Raboaca, Constantin Filote, Roxana Elena Ionete, Violeta Carolina Niculescu e Marius Constantinescu. "Sewage Sludge Derived Materials for CO2 Adsorption". Applied Sciences 11, n.º 15 (2 de agosto de 2021): 7139. http://dx.doi.org/10.3390/app11157139.
Texto completo da fonteSu, Yiru, Siyao Liu e Xuechao Gao. "Impact of Impure Gas on CO2 Capture from Flue Gas Using Carbon Nanotubes: A Molecular Simulation Study". Molecules 27, n.º 5 (1 de março de 2022): 1627. http://dx.doi.org/10.3390/molecules27051627.
Texto completo da fonteLi, Pengli, Yongli Shen, Dandan Wang, Yanli Chen e Yunfeng Zhao. "Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals". Molecules 24, n.º 9 (11 de maio de 2019): 1822. http://dx.doi.org/10.3390/molecules24091822.
Texto completo da fonteVieira, Luciana Onofre, Alexandre Canarin Madeira, Aline Merlini, Carolina Resmini Melo, Erlon Mendes, Maria Glória Santos, Márcio Roberto da Rocha e Elídio Angioletto. "Synthesis of 4A-Zeolite for Adsorption of CO2". Materials Science Forum 805 (setembro de 2014): 632–37. http://dx.doi.org/10.4028/www.scientific.net/msf.805.632.
Texto completo da fonteZang, Xiaoya, Na Zhang, Xuebing Zhou, Lihua Wan e Deqing Liang. "Experimental Investigation of the Hydrate-Based Gas Separation of Synthetic Flue Gas with 5A Zeolite". Energies 13, n.º 17 (2 de setembro de 2020): 4556. http://dx.doi.org/10.3390/en13174556.
Texto completo da fonteWang, Yutong, Xu Jiang, Xiong Yang, Shiqing Wang, Xiaolong Qiu, Lianbo Liu, Shiwang Gao, Ziyi Li e Chuanzhao Zhang. "Molecular Simulation of Adsorption Separation of CO2 from Combustion Exhaust Mixture of Commercial Zeolites". Processes 11, n.º 10 (16 de outubro de 2023): 2987. http://dx.doi.org/10.3390/pr11102987.
Texto completo da fonteVannak, Heak, Yugo Osaka, Takuya Tsujiguchi e Akio Kodama. "Air-Purge Regenerative Direct Air Capture Using an Externally Heated and Cooled Temperature-Swing Adsorber Packed with Solid Amine". Separations 10, n.º 7 (21 de julho de 2023): 415. http://dx.doi.org/10.3390/separations10070415.
Texto completo da fonteMitropoulos, Athanasios Ch, Ramonna I. Kosheleva, Margaritis Kostoglou e Thodoris D. Karapantsios. "The Effect of Rotation on Gas Storage in Nanoporous Materials". Separations 11, n.º 3 (24 de fevereiro de 2024): 72. http://dx.doi.org/10.3390/separations11030072.
Texto completo da fonteZhang, Fucan, Ping Liu, Kan Zhang e Qing-Wen Song. "Chemical Adsorption Strategy for DMC-MeOH Mixture Separation". Molecules 26, n.º 6 (19 de março de 2021): 1735. http://dx.doi.org/10.3390/molecules26061735.
Texto completo da fonteIsmail, Marhaina, Mohamad Azmi Bustam e Yin Fong Yeong. "Gallate-Based Metal–Organic Frameworks, a New Family of Hybrid Materials and Their Applications: A Review". Crystals 10, n.º 11 (5 de novembro de 2020): 1006. http://dx.doi.org/10.3390/cryst10111006.
Texto completo da fonteYuan, Qin, Hong Hong Yi, Xiao Long Tang, Kai Li, Fen Rong Li e Yun Dong Li. "Adsorption and Separation Research of CO2/CH4 on Modified Activated Carbon Fiber". Advanced Materials Research 986-987 (julho de 2014): 13–16. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.13.
Texto completo da fonteAlias, Nur Hashimah, K. S. N. Kamarudi, Nurul Aimi Ghazali, T. A. T. Mohd, Arina Sauki e Mohd Redwan Jaafar. "Carbon Dioxide Separation Using Amine Modified Zeolite in Pressure Swing Adsorption System". Key Engineering Materials 594-595 (dezembro de 2013): 160–67. http://dx.doi.org/10.4028/www.scientific.net/kem.594-595.160.
Texto completo da fonteLi, Yao, Ran Xu, Binbin Wang, Jianping Wei, Lanyun Wang, Mengqi Shen e Juan Yang. "Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2". Nanomaterials 9, n.º 2 (15 de fevereiro de 2019): 266. http://dx.doi.org/10.3390/nano9020266.
Texto completo da fonteWei, Jian Wen, e Song Sheng Zhao. "Capture of Carbon Dioxide by Adsorption- A Review". Advanced Materials Research 538-541 (junho de 2012): 2240–45. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2240.
Texto completo da fonteWotzka, Alexander, Majid Namayandeh Jorabchi e Sebastian Wohlrab. "Separation of H2O/CO2 Mixtures by MFI Membranes: Experiment and Monte Carlo Study". Membranes 11, n.º 6 (10 de junho de 2021): 439. http://dx.doi.org/10.3390/membranes11060439.
Texto completo da fonteDhedia, Muhammad Fannka, Mahidin Mahidin, Husni Husin, Hisbullah Hisbullah, Nasrullah Razali, Alvan Ade Reza e Abdul Hadi. "Carbon Dioxide (CO2) Separation Study Using Chemically Activated Serpentine as an Adsorbent". Jurnal Rekayasa Kimia & Lingkungan 19, n.º 2 (19 de dezembro de 2024): 237–50. https://doi.org/10.23955/rkl.v19i2.41399.
Texto completo da fonteLi, Yanxi, Yuhua Bai, Zhuozheng Wang, Qihan Gong, Mengchen Li, Yawen Bo, Hua Xu, Guiyuan Jiang e Kebin Chi. "Exquisitely Constructing a Robust MOF with Dual Pore Sizes for Efficient CO2 Capture". Molecules 28, n.º 17 (28 de agosto de 2023): 6276. http://dx.doi.org/10.3390/molecules28176276.
Texto completo da fonteRozaini, Muhamad Tahriri, Denys I. Grekov, Mohamad Azmi Bustam e Pascaline Pré. "Shaping of HKUST-1 via Extrusion for the Separation of CO2/CH4 in Biogas". Separations 10, n.º 9 (6 de setembro de 2023): 487. http://dx.doi.org/10.3390/separations10090487.
Texto completo da fonteAwadallah-F, Ahmed, e Shaheen A. Al-Muhtaseb. "Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases". Applied Sciences 11, n.º 1 (29 de dezembro de 2020): 265. http://dx.doi.org/10.3390/app11010265.
Texto completo da fonteAleksandrzak, Tomasz, Kamila Zabielska e Elżbieta Gabruś. "Modeling and experimental studies of carbon dioxide separation on zeolite fixed bed by cyclic pressure swing adsorption". Polish Journal of Chemical Technology 26, n.º 1 (1 de março de 2024): 8–15. http://dx.doi.org/10.2478/pjct-2024-0002.
Texto completo da fonteLiu, Quan, Zhonglian Yang, Gongping Liu, Longlong Sun, Rong Xu e Jing Zhong. "Functionalized GO Membranes for Efficient Separation of Acid Gases from Natural Gas: A Computational Mechanistic Understanding". Membranes 12, n.º 11 (16 de novembro de 2022): 1155. http://dx.doi.org/10.3390/membranes12111155.
Texto completo da fonteDamasceno Borges, Daiane, e Douglas S. Galvao. "Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study". MRS Advances 3, n.º 1-2 (2018): 115–20. http://dx.doi.org/10.1557/adv.2018.190.
Texto completo da fonteChen, Lei, Takumi Watanabe, Hirofumi Kanoh, Kenji Hata e Tomonori Ohba. "Cooperative CO2 adsorption promotes high CO2 adsorption density over wide optimal nanopore range". Adsorption Science & Technology 36, n.º 1-2 (9 de junho de 2017): 625–39. http://dx.doi.org/10.1177/0263617417713573.
Texto completo da fonteSusanti, Indri. "Technologies and Materials for Carbon Dioxide Capture". Science Education and Application Journal 1, n.º 2 (5 de outubro de 2019): 84. http://dx.doi.org/10.30736/seaj.v1i2.147.
Texto completo da fonteYang, Li Yan, Yi Hui Guo e Li Li Yu. "Preparation and Thermodynamics Adsorption Performance of Cobalt Ions on the Crosslinked Starch Microspheres". Advanced Materials Research 726-731 (agosto de 2013): 435–39. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.435.
Texto completo da fonteSalazar Duarte, Gabriel, Benedikt Schürer, Christian Voss e Dieter Bathen. "Adsorptive Separation of CO2 from Flue Gas by Temperature Swing Adsorption Processes". ChemBioEng Reviews 4, n.º 5 (26 de junho de 2017): 277–88. http://dx.doi.org/10.1002/cben.201600029.
Texto completo da fonteMulgundmath, V. P., F. H. Tezel, T. Saatcioglu e T. C. Golden. "Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite". Canadian Journal of Chemical Engineering 90, n.º 3 (22 de julho de 2011): 730–38. http://dx.doi.org/10.1002/cjce.20592.
Texto completo da fonteGomez, Luis Fernando, Renju Zacharia, Pierre Bénard e Richard Chahine. "Simulation of Binary CO2/CH4Mixture Breakthrough Profiles in MIL-53 (Al)". Journal of Nanomaterials 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/439382.
Texto completo da fonteZhang, Qiang, Guan-Nan Han, Xin Lian, Shan-Qing Yang e Tong-Liang Hu. "Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C2H2 Separation from CO2 and C2H4". Molecules 27, n.º 18 (12 de setembro de 2022): 5929. http://dx.doi.org/10.3390/molecules27185929.
Texto completo da fonteHuang, Binxin. "Research progress of CO2 separation technology by solvent absorption". E3S Web of Conferences 385 (2023): 04032. http://dx.doi.org/10.1051/e3sconf/202338504032.
Texto completo da fonteKong, Xueying, Shangsiying Li, Maria Strømme e Chao Xu. "Synthesis of Porous Organic Polymers with Tunable Amine Loadings for CO2 Capture: Balanced Physisorption and Chemisorption". Nanomaterials 9, n.º 7 (17 de julho de 2019): 1020. http://dx.doi.org/10.3390/nano9071020.
Texto completo da fonteBallesteros-Plata, Daniel, Juan Antonio Cecilia, Isabel Barroso-Martín, José Jiménez-Jiménez, Antonia Infantes-Molina e Enrique Rodríguez-Castellón. "Materials Design for N2O Capture: Separation in Gas Mixtures". Catalysts 12, n.º 12 (29 de novembro de 2022): 1539. http://dx.doi.org/10.3390/catal12121539.
Texto completo da fonte