Artigos de revistas sobre o tema "CO/CO2 hydrogenation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CO/CO2 hydrogenation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Li, Meng, e Dong Ding. "(Invited) Tuning Selective CO2 Electrohydrogenation Under Mid Temperature and Pressure". ECS Meeting Abstracts MA2024-01, n.º 37 (9 de agosto de 2024): 2184. http://dx.doi.org/10.1149/ma2024-01372184mtgabs.
Texto completo da fonteKonsolakis, Michalis, Maria Lykaki, Sofia Stefa, Sόnia A. C. Carabineiro, Georgios Varvoutis, Eleni Papista e Georgios E. Marnellos. "CO2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu)". Nanomaterials 9, n.º 12 (6 de dezembro de 2019): 1739. http://dx.doi.org/10.3390/nano9121739.
Texto completo da fontePriyadarshani, Nilusha, Bojana Ginovska, J. Timothy Bays, John C. Linehan e Wendy J. Shaw. "Photoswitching a molecular catalyst to regulate CO2 hydrogenation". Dalton Transactions 44, n.º 33 (2015): 14854–64. http://dx.doi.org/10.1039/c5dt01649e.
Texto completo da fonteQuan, Fengjiao, Guangming Zhan, Chengliang Mao, Zhihui Ai, Falong Jia, Lizhi Zhang, Honggang Gu e Shiyuan Liu. "Efficient light-driven CO2 hydrogenation on Ru/CeO2 catalysts". Catalysis Science & Technology 8, n.º 24 (2018): 6503–10. http://dx.doi.org/10.1039/c8cy01787e.
Texto completo da fonteWang, Yushan, Mengting Yu, Xinyi Zhang, Yujie Gao, Jia Liu, Ximing Zhang, Chunxiao Gong, Xiaoyong Cao, Zhaoyang Ju e Yongwu Peng. "Density Functional Theory Study of CO2 Hydrogenation on Transition-Metal-Doped Cu(211) Surfaces". Molecules 28, n.º 6 (22 de março de 2023): 2852. http://dx.doi.org/10.3390/molecules28062852.
Texto completo da fonteLykaki, Maria, Sofia Stefa, Georgios Varvoutis, Vassilios D. Binas, George E. Marnellos e Michalis Konsolakis. "Comparative Assessment of First-Row 3d Transition Metals (Ti-Zn) Supported on CeO2 Nanorods for CO2 Hydrogenation". Catalysts 14, n.º 9 (11 de setembro de 2024): 611. http://dx.doi.org/10.3390/catal14090611.
Texto completo da fonteLi, Xiuping, Jiaqi Wang, Bolin Yin, Kaihong Liu, Jingjing Zhao, Bo Jiang e Hexing Li. "Plasmonic Cu-supported amorphous RuP for efficient photothermal CO2 hydrogenation to CO". RSC Advances 15, n.º 3 (2025): 1658–64. https://doi.org/10.1039/d4ra07361d.
Texto completo da fonteLiu, Miao, Yanhui Yi, Li Wang, Hongchen Guo e Annemie Bogaerts. "Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis". Catalysts 9, n.º 3 (18 de março de 2019): 275. http://dx.doi.org/10.3390/catal9030275.
Texto completo da fonteLu, Bowen, Huiying Sang, Liang Liu, Zhijian Yu, Yaqin Guo e Yongqing Xu. "The Synergistic Effect of CeO2 and Micron-Cu Enhances the Hydrogenation of CO2 to CO". Processes 12, n.º 9 (6 de setembro de 2024): 1912. http://dx.doi.org/10.3390/pr12091912.
Texto completo da fonteMorozova, O. S., A. N. Streletskii, I. V. Berestetskaya e A. B. Borunova. "Co and Co2 hydrogenation under mechanochemical treatment". Catalysis Today 38, n.º 1 (outubro de 1997): 107–13. http://dx.doi.org/10.1016/s0920-5861(97)00044-8.
Texto completo da fonteYang, Bin, Yifu Wang, Longtai Li, Biao Gao, Lingxia Zhang e Limin Guo. "Probing the morphological effects of ReOx/CeO2 catalysts on the CO2 hydrogenation reaction". Catalysis Science & Technology 12, n.º 4 (2022): 1159–72. http://dx.doi.org/10.1039/d1cy02096j.
Texto completo da fonteGuo, Wei, Jian Jun Wang, Wen Gui Gao e Hua Wang. "Comparison of Two Different Methods of Preparing Chemical Raw Materials Using Blast Furnace Gas". Advanced Materials Research 511 (abril de 2012): 96–100. http://dx.doi.org/10.4028/www.scientific.net/amr.511.96.
Texto completo da fonteSirikulbodee, Paphatsara, Monrudee Phongaksorn, Thana Sornchamni, Tanakorn Ratana e Sabaithip Tungkamani. "Effect of Different Iron Phases of Fe/SiO2 Catalyst in CO2 Hydrogenation under Mild Conditions". Catalysts 12, n.º 7 (25 de junho de 2022): 698. http://dx.doi.org/10.3390/catal12070698.
Texto completo da fonteNovodárszki, Gyula, Ferenc Lónyi, Magdolna R. Mihályi, Anna Vikár, Róbert Barthos, Blanka Szabó, József Valyon e Hanna E. Solt. "Reaction Pathways of Gamma-Valerolactone Hydroconversion over Co/SiO2 Catalyst". Catalysts 13, n.º 7 (23 de julho de 2023): 1144. http://dx.doi.org/10.3390/catal13071144.
Texto completo da fonteSviderskiy, S. A., O. S. Dement'eva, M. I. Ivantsov, A. A. Grabchak, M. V. Kulikova e A. L. Maksimov. "Hydrogenation of CO2 over Biochar-Supported Catalysts". Нефтехимия 63, n.º 2 (15 de abril de 2023): 239–49. http://dx.doi.org/10.31857/s0028242123020089.
Texto completo da fonteYang, Chengsheng, Rentao Mu, Guishuo Wang, Jimin Song, Hao Tian, Zhi-Jian Zhao e Jinlong Gong. "Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation". Chemical Science 10, n.º 11 (2019): 3161–67. http://dx.doi.org/10.1039/c8sc05608k.
Texto completo da fonteJurca, Bogdan, Lu Peng, Ana Primo, Alvaro Gordillo, Amarajothi Dhakshinamoorthy, Vasile I. Parvulescu e Hermenegildo García. "Promotional Effects on the Catalytic Activity of Co-Fe Alloy Supported on Graphitic Carbon for CO2 Hydrogenation". Nanomaterials 12, n.º 18 (16 de setembro de 2022): 3220. http://dx.doi.org/10.3390/nano12183220.
Texto completo da fonteWang, Jiaqi, Kaihong Liu, Jingjing Zhao, Xiuping Li, Bolin Yin, Bo Jiang e Hexing Li. "Tuning the selectivity of the CO2 hydrogenation reaction using boron-doped cobalt-based catalysts". RSC Advances 14, n.º 10 (2024): 6502–7. http://dx.doi.org/10.1039/d3ra07488a.
Texto completo da fonteDou, Maobin, Minhua Zhang, Yifei Chen e Yingzhe Yu. "DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site". New Journal of Chemistry 42, n.º 5 (2018): 3293–300. http://dx.doi.org/10.1039/c7nj04273f.
Texto completo da fonteKhajonvittayakul, Chalempol, Vut Tongnan, Suksun Amornraksa, Navadol Laosiripojana, Matthew Hartley e Unalome Wetwatana Hartley. "CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3". Catalysts 11, n.º 10 (26 de setembro de 2021): 1159. http://dx.doi.org/10.3390/catal11101159.
Texto completo da fonteCalizzi, Marco, Robin Mutschler, Nicola Patelli, Andrea Migliori, Kun Zhao, Luca Pasquini e Andreas Züttel. "CO2 Hydrogenation over Unsupported Fe-Co Nanoalloy Catalysts". Nanomaterials 10, n.º 7 (11 de julho de 2020): 1360. http://dx.doi.org/10.3390/nano10071360.
Texto completo da fonteSeuser, Grant, Raechel Staffel, Yagmur Hocaoglu, Gabriel F. Upton, Elijah S. Garcia, Donald C. Cronauer, A. Jeremy Kropf, Michela Martinelli e Gary Jacobs. "CO2 Hydrogenation: Na Doping Promotes CO and Hydrocarbon Formation over Ru/m-ZrO2 at Elevated Pressures in Gas Phase Media". Nanomaterials 13, n.º 7 (24 de março de 2023): 1155. http://dx.doi.org/10.3390/nano13071155.
Texto completo da fonteYang, Zhen-Zhen, Hongye Zhang, Bo Yu, Yanfei Zhao, Guipeng Ji e Zhimin Liu. "A Tröger's base-derived microporous organic polymer: design and applications in CO2/H2 capture and hydrogenation of CO2 to formic acid". Chemical Communications 51, n.º 7 (2015): 1271–74. http://dx.doi.org/10.1039/c4cc08295h.
Texto completo da fonteNasriddinov, Khasan, Ji-Eun Min, Hae-Gu Park, Seung Ju Han, Jingyu Chen, Ki-Won Jun e Seok Ki Kim. "Effect of Co, Cu, and Zn on FeAlK catalysts in CO2 hydrogenation to C5+ hydrocarbons". Catalysis Science & Technology 12, n.º 3 (2022): 906–15. http://dx.doi.org/10.1039/d1cy01980e.
Texto completo da fonteLushchikova, Olga V., Máté Szalay, Hossein Tahmasbi, Ludo B. F. Juurlink, Jörg Meyer, Tibor Höltzl e Joost M. Bakker. "IR spectroscopic characterization of the co-adsorption of CO2 and H2 onto cationic Cun+ clusters". Physical Chemistry Chemical Physics 23, n.º 47 (2021): 26661–73. http://dx.doi.org/10.1039/d1cp03119h.
Texto completo da fonteChen, Yun, Jinzhao Liu, Xinyu Chen, Siyao Gu, Yibin Wei, Lei Wang, Hui Wan e Guofeng Guan. "Development of Multifunctional Catalysts for the Direct Hydrogenation of Carbon Dioxide to Higher Alcohols". Molecules 29, n.º 11 (4 de junho de 2024): 2666. http://dx.doi.org/10.3390/molecules29112666.
Texto completo da fonteLi, Yanbing, Yingluo He, Kensei Fujihara, Chengwei Wang, Xu Sun, Weizhe Gao, Xiaoyu Guo, Shuhei Yasuda, Guohui Yang e Noritatsu Tsubaki. "A Core-Shell Structured Na/Fe@Co Bimetallic Catalyst for Light-Hydrocarbon Synthesis from CO2 Hydrogenation". Catalysts 13, n.º 7 (11 de julho de 2023): 1090. http://dx.doi.org/10.3390/catal13071090.
Texto completo da fontede Winter, Tamara M., Jaddie Ho, Christopher J. Alridge e Philip G. Jessop. "CO2-Assisted asymmetric hydrogenation of prochiral allylamines". RSC Advances 12, n.º 11 (2022): 6755–61. http://dx.doi.org/10.1039/d2ra00263a.
Texto completo da fonteJiang, Tao, Duy Le, Katerina L. Chagoya, David J. Nash, Richard G. Blair e Talat S. Rahman. "Catalytic reduction of carbon dioxide to methanol over defect-laden hexagonal boron nitride: insights into reaction mechanisms". Journal of Physics: Condensed Matter 37, n.º 13 (11 de fevereiro de 2025): 135201. https://doi.org/10.1088/1361-648x/adad2b.
Texto completo da fonteLu, Xiaoqing, Weili Wang, Shuxian Wei, Chen Guo, Yang Shao, Mingmin Zhang, Zhigang Deng, Houyu Zhu e Wenyue Guo. "Initial reduction of CO2 on perfect and O-defective CeO2 (111) surfaces: towards CO or COOH?" RSC Advances 5, n.º 118 (2015): 97528–35. http://dx.doi.org/10.1039/c5ra17825h.
Texto completo da fonteBROWNBOURZUTSCHKY, J. "Hydrogenation of CO2 and CO2/CO mixtures over copper-containing catalysts". Journal of Catalysis 124, n.º 1 (julho de 1990): 73–85. http://dx.doi.org/10.1016/0021-9517(90)90104-r.
Texto completo da fonteSh.F.Tagiyeva, Sh F. Tagiyeva. "HYDROGENATION OF CARBON DIOXIDE ON SIRAL ALUMINOSILICATES MODIFIED WITH COBALT AND PALLADIUM". Azerbaijan Journal of Chemical News 04, n.º 01 (30 de maio de 2022): 81–86. http://dx.doi.org/10.32010/ajcn05012022-81.
Texto completo da fonteSeo, Boseok, Eun Hee Ko, Jinho Boo, Minkyu Kim, Dohyung Kang e No-Kuk Park. "CO2 Hydrogenation on NixMg1−xAl2O4: A Comparative Study of MgAl2O4 and NiAl2O4". Catalysts 11, n.º 9 (24 de agosto de 2021): 1026. http://dx.doi.org/10.3390/catal11091026.
Texto completo da fonteFrontera, Patrizia, Anastasia Macario, Angela Malara, Vincenza Modafferi, Maria Cristina Mascolo, Sebastiano Candamano, Fortunato Crea e Pierluigi Antonucci. "CO2 and CO hydrogenation over Ni-supported materials". Functional Materials Letters 11, n.º 05 (outubro de 2018): 1850061. http://dx.doi.org/10.1142/s1793604718500613.
Texto completo da fonteBaussart, Hervé, René Delobel, Michel Le Bras e Jean-Marie Leroy. "Hydrogenation of CO2 over Co/Cu/K catalysts". Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 83, n.º 6 (1987): 1711. http://dx.doi.org/10.1039/f19878301711.
Texto completo da fonteSun, Yanyang, Linfei Xiao e Wei Wu. "In Situ Carbon-Confined MoSe2 Catalyst with Heterojunction for Highly Selective CO2 Hydrogenation to Methanol". Molecules 29, n.º 10 (8 de maio de 2024): 2186. http://dx.doi.org/10.3390/molecules29102186.
Texto completo da fonteLi, Shang Gui, Hai Jun Guo, Hai Rong Zhang, Jun Luo, Lian Xiong, Cai Rong Luo e Xin De Chen. "The Reverse Water-Gas Shift Reaction and the Synthesis of Mixed Alcohols over K/Cu-Zn Catalyst from CO2 Hydrogenation". Advanced Materials Research 772 (setembro de 2013): 275–80. http://dx.doi.org/10.4028/www.scientific.net/amr.772.275.
Texto completo da fontePortillo, Ander, Onintze Parra, Andrés T. Aguayo, Javier Ereña, Javier Bilbao e Ainara Ateka. "Setting up In2O3-ZrO2/SAPO-34 Catalyst for Improving Olefin Production via Hydrogenation of CO2/CO Mixtures". Catalysts 13, n.º 7 (14 de julho de 2023): 1101. http://dx.doi.org/10.3390/catal13071101.
Texto completo da fonteXie, Fengqiong, Shiyu Xu, Lidan Deng, Hongmei Xie e Guilin Zhou. "CO2 hydrogenation on Co/CeO2-δ catalyst: Morphology effect from CeO2 support". International Journal of Hydrogen Energy 45, n.º 51 (outubro de 2020): 26938–52. http://dx.doi.org/10.1016/j.ijhydene.2020.05.260.
Texto completo da fonteChuang, Steven S. C., Mark A. Brundage, Michael W. Balakos e Girish Srinivas. "Transient in Situ Infrared Methods for Investigation of Adsorbates in Catalysis". Applied Spectroscopy 49, n.º 8 (agosto de 1995): 1151–63. http://dx.doi.org/10.1366/0003702953964994.
Texto completo da fonteShan, Xuekai, Guolin Zhang, Ying Zhang, Shuobo Zhang, Fang Guo e Qi Xu. "Photothermal CO2 Hydrogenation to Methanol over Ni-In2O3/g-C3N4 Heterojunction Catalysts". Catalysts 14, n.º 11 (26 de outubro de 2024): 756. http://dx.doi.org/10.3390/catal14110756.
Texto completo da fonteMandal, Shyama Charan, Kuber Singh Rawat, Surajit Nandi e Biswarup Pathak. "Theoretical insights into CO2 hydrogenation to methanol by a Mn–PNP complex". Catalysis Science & Technology 9, n.º 8 (2019): 1867–78. http://dx.doi.org/10.1039/c9cy00114j.
Texto completo da fonteQu, Ya Kun, Xiao Guang Zhao, Li Xin Wang e Yu Wu. "Na2O Promotion on CO2 Hydrogenation on the χ-Fe5C2(2 0 0) Surface". Key Engineering Materials 872 (janeiro de 2021): 85–89. http://dx.doi.org/10.4028/www.scientific.net/kem.872.85.
Texto completo da fonteQu, Ya Kun, Xiao Guang Zhao, Li Xin Wang e Yu Wu. "Na2O Promotion on CO2 Hydrogenation on the χ-Fe5C2(2 0 0) Surface". Key Engineering Materials 872 (janeiro de 2021): 85–89. http://dx.doi.org/10.4028/www.scientific.net/kem.872.85.
Texto completo da fonteGeri, Jacob B., Joanna L. Ciatti e Nathaniel K. Szymczak. "Charge effects regulate reversible CO2 reduction catalysis". Chemical Communications 54, n.º 56 (2018): 7790–93. http://dx.doi.org/10.1039/c8cc04370a.
Texto completo da fonteBahruji, Hasliza, Mshaal Almalki e Norli Abdullah. "Highly Selective Au/ZnO via Colloidal Deposition for CO2 Hydrogenation to Methanol: Evidence of AuZn Role". Bulletin of Chemical Reaction Engineering & Catalysis 16, n.º 1 (19 de janeiro de 2021): 44–51. http://dx.doi.org/10.9767/bcrec.16.1.9375.44-51.
Texto completo da fonteJiang, Feng, Yu Yang, Li Wang, Yufeng Li, Zhihao Fang, Yuebing Xu, Bing Liu e Xiaohao Liu. "Dependence of copper particle size and interface on methanol and CO formation in CO2 hydrogenation over Cu@ZnO catalysts". Catalysis Science & Technology 12, n.º 2 (2022): 551–64. http://dx.doi.org/10.1039/d1cy01836a.
Texto completo da fonteXi, Yongjie, Tingting Wang, Jia Wang, Jinlei Li e Fuwei Li. "Essential role of CO coverage in CO2 hydrogenation over Pt(111)". Catalysis Science & Technology, 2023. http://dx.doi.org/10.1039/d3cy01134h.
Texto completo da fonteMen, Yu‐Long, Peng Liu, Dang‐Guo Cheng, Chong Peng, Yiyi Zhao e Yun‐Xiang Pan. "Enhanced selective hydrogenation of CO2 to CH4 on molybdenum carbide hollow sphere catalyst". AIChE Journal, 2 de agosto de 2024. http://dx.doi.org/10.1002/aic.18555.
Texto completo da fonteCui, Aixin, Man Wu, Tuo Guo, Xiunan Sun, Yulong Chen e Qingjie Guo. "Potassium-modified calcium-ferrate-catalyzed hydrogenation of carbon dioxide to produce light olefins". New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj01579g.
Texto completo da fonte