Literatura científica selecionada sobre o tema "CMRO2"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "CMRO2".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "CMRO2"
Jain, Varsha, Erin M. Buckley, Daniel J. Licht, Jennifer M. Lynch, Peter J. Schwab, Maryam Y. Naim, Natasha A. Lavin et al. "Cerebral Oxygen Metabolism in Neonates with Congenital Heart Disease Quantified by MRI and Optics". Journal of Cerebral Blood Flow & Metabolism 34, n.º 3 (11 de dezembro de 2013): 380–88. http://dx.doi.org/10.1038/jcbfm.2013.214.
Texto completo da fonteKlementavicius, Richard, Edwin M. Nemoto e Howard Yonas. "The Q10 ratio for basal cerebral metabolic rate for oxygen in rats". Journal of Neurosurgery 85, n.º 3 (setembro de 1996): 482–87. http://dx.doi.org/10.3171/jns.1996.85.3.0482.
Texto completo da fonteZhu, Xiao-Hong, Nanyin Zhang, Yi Zhang, Kâmil Uğurbil e Wei Chen. "New Insights into Central Roles of Cerebral Oxygen Metabolism in the Resting and Stimulus-Evoked Brain". Journal of Cerebral Blood Flow & Metabolism 29, n.º 1 (10 de setembro de 2008): 10–18. http://dx.doi.org/10.1038/jcbfm.2008.97.
Texto completo da fonteMeyer, E., J. L. Tyler, C. J. Thompson, C. Redies, M. Diksic e A. M. Hakim. "Estimation of Cerebral Oxygen Utilization Rate by Single-Bolus 15O2 Inhalation and Dynamic Positron Emission Tomography". Journal of Cerebral Blood Flow & Metabolism 7, n.º 4 (agosto de 1987): 403–14. http://dx.doi.org/10.1038/jcbfm.1987.83.
Texto completo da fonteThomsen, Kirsten, Henning Piilgaard, Albert Gjedde, Gilles Bonvento e Martin Lauritzen. "Principal Cell Spiking, Postsynaptic Excitation, and Oxygen Consumption in the Rat Cerebellar Cortex". Journal of Neurophysiology 102, n.º 3 (setembro de 2009): 1503–12. http://dx.doi.org/10.1152/jn.00289.2009.
Texto completo da fonteRodgers, Zachary B., John A. Detre e Felix W. Wehrli. "MRI-based methods for quantification of the cerebral metabolic rate of oxygen". Journal of Cerebral Blood Flow & Metabolism 36, n.º 7 (18 de abril de 2016): 1165–85. http://dx.doi.org/10.1177/0271678x16643090.
Texto completo da fonteVazquez, Alberto L., Mitsuhiro Fukuda e Seong-Gi Kim. "Evolution of the Dynamic Changes in Functional Cerebral Oxidative Metabolism from Tissue Mitochondria to Blood Oxygen". Journal of Cerebral Blood Flow & Metabolism 32, n.º 4 (1 de fevereiro de 2012): 745–58. http://dx.doi.org/10.1038/jcbfm.2011.198.
Texto completo da fonteVafaee, Manouchehr S., Albert Gjedde, Nasrin Imamirad, Kim Vang, Mallar M. Chakravarty, Jason P. Lerch e Paul Cumming. "Smoking Normalizes Cerebral Blood Flow and Oxygen Consumption after 12-Hour Abstention". Journal of Cerebral Blood Flow & Metabolism 35, n.º 4 (21 de janeiro de 2015): 699–705. http://dx.doi.org/10.1038/jcbfm.2014.246.
Texto completo da fonteBusija, D. W., C. W. Leffler e M. Pourcyrous. "Hyperthermia increases cerebral metabolic rate and blood flow in neonatal pigs". American Journal of Physiology-Heart and Circulatory Physiology 255, n.º 2 (1 de agosto de 1988): H343—H346. http://dx.doi.org/10.1152/ajpheart.1988.255.2.h343.
Texto completo da fonteSingh, Narendra C., Patrick M. Kochanek, Joanne K. Schiding, John A. Melick e Edwin M. Nemoto. "Uncoupled Cerebral Blood Flow and Metabolism after Severe Global Ischemia in Rats". Journal of Cerebral Blood Flow & Metabolism 12, n.º 5 (setembro de 1992): 802–8. http://dx.doi.org/10.1038/jcbfm.1992.111.
Texto completo da fonteTeses / dissertações sobre o assunto "CMRO2"
Hoffmann, Stefan Heinrich [Verfasser], e Peter [Akademischer Betreuer] Bachert. "Lokalisierte Quantifizierung des zerebralen Sauerstoffumsatzes (CMRO2) mit der 17O-Magnetresonanztomographie / Stefan Heinrich Hoffmann ; Betreuer: Peter Bachert". Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179783204/34.
Texto completo da fonteBoylan, Simon. "Cognitive effort, efficient coding and non-invasive fMRI measurement of their relation in sensorimotor responses". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0463.
Texto completo da fonteCognitive effort is a ubiquitous subjective feeling of exertion that pushes people to avoid demanding tasks. From a biological and evolutionary point of view, mental effort is thought to be a mechanism intended to preserve cognitive resources. However, so far, no consensus on the nature of these resources has been established. Since the brain functions as an information-processing organ, efficient coding theory suggests that cognitive resources—whatever their nature—are optimized and should depend on information gain.This hypothesis assumes certain principles about neural coding and information processing. Firstly, we frame our work in the premise that the brain is a Bayesian information-processing machine, that updates internal models through inferences between inputs and previous beliefs. If stimuli are familiar and naturalistic, efficient neural coding can take place to optimize information coding and processing. If these conditions are met, then we can estimate the quantity of information computed by the brain as the relative entropy between prior and posterior beliefs, or information gain; moreover the quantity of energy needed to compute information being optimized, energy spent on a task should be proportional to this same quantity.Indirect measures of this relationship have been validated through pupillometry, as pupil size correlates with information rate during cognitive tasks. In this thesis, we designed experiments to further validate this information-theoretical framework, using complementary behavioral and neuroimaging measures.To assess this hypothesis, we conducted three key experiments : two joystick visuo-motor and oculomotor tracking tasks with pupillometry, and a response-to-stimulus (Hick-Hyman) task in fMRI.The first study investigates the relation between cognitive effort, pupil size and continuous visual-motor prediction under this information framework. By controlling information components of the target, such as predictability, lag, speed and acceleration, we can validate the information origin of cognitive effort (NASA-TLX) and its correlation with pupil size .The second experiment was developed to test the overnight memorization and implicitness of eye and hand continuous tracking. Using the same design as in the first experiment, we ran four experimental sessions, divided in joystick and eye tracking, on two consecutive days. We showed that participants implicitly learned to better predict repeating parts of the trajectory, which resulted in better performance and smaller pupil dilation.The last study was designed to investigate the relationship between information processing and energy dissipation in the brain by quantifying the cerebral metabolic rate of oxygen (CMRO2) during a response to stimulus task in fMRI (BOLD-ASL sequence). Hick-Hyman task maps a different number of stimuli to their response buttons, depending on the complexity (entropy) of the trial or block. As a linear relationship exists between the quantity of information processed (entropy) and the performance (response time) during the task, we hypothesized that there should be a similar relation between the quantity of information needed to accomplish a task and the energy allocated to do so. We addressed multiple technical issues related to CMRO2 computation in a cognitive task context. While we have improved and automatized the data analysis pipeline, we faced significant challenges that prevented us to reach a final conclusion on our initial hypothesis
Bolar, Divya Sanam. "Magnetic resonance imaging of the cerebral metabolic rate of oxygen (CMRO₂)". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57542.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 120-128).
Oxygen consumption is an essential process of the functioning brain. The rate at which the brain consumes oxygen is known as the cerebral metabolic rate of oxygen (CMRO₂). CMRO₂ is intimately related to brain health and function, and will change in settings of disease and functional activation. Accurate CMRO₂ measurement will enable detailed investigation of neuropathology and facilitate our understanding of the brain's underlying functional architecture. Despite the importance of CMRO₂ in both clinical and basic neuroscience settings, a robust CMRO₂ mapping technique amenable to functional and clinical MRI has not been established. To address this issue, a novel method called QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption, or QUIXOTIC, is introduced. The key innovation in QUIXOTIC is the use of velocity-selective spin labeling to isolate MR signal exclusively from post-capillary venular blood on a voxel-by-voxel basis. This isolated signal can be related to venular oxygen saturation, oxygen extraction fraction, and ultimately CMRO₂. This thesis first explores fundamental theory behind the QUIXOTIC technique, including design of a novel MRI pulse sequence, explanation of the principal sequence parameters, and results from initial human experiences. A human trial follows, in which QUIXOTIC is used to measure cortical gray matter CMRO₂ in ten healthy volunteers.
(cont.) QUIXOTIC-measured CMRO₂ is found to be within the expected physiological range and is comparable to values reported by other techniques. QUIXOTIC is then applied to evaluate CMRO₂ response to carbon-dioxide-induced hypercapnia in awake humans. In this study, CMRO₂ is observed to decrease in response to mild hypercapnia. Finally, pilot studies that show feasibility of QUIXOTIC-based functional MRI (fMRI) and so-called "turbo" QUIXOTIC are presented and discussed.
by Divya Sanam Bolar.
Ph.D.
Tan, Hsueh-Li. "The Role of Tomato Bioactive Components and CMO2 Gene Interaction in Prostate Cancer Prevention". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345493048.
Texto completo da fonteZENATTI, MURIEL. "Des raisons biochimiques de l'atteinte preferentielle de la corticosterone methyl oxydase de type 2 (cmo2) dans le carcinome surrenalien". Paris 6, 1993. http://www.theses.fr/1993PA066281.
Texto completo da fonteCapítulos de livros sobre o assunto "CMRO2"
Bale, Gemma, Ajay Rajaram, Matthew Kewin, Laura Morrison, Alan Bainbridge, Linshan Liu, Udunna Anazodo, Mamadou Diop, Keith St Lawrence e Ilias Tachtsidis. "Multimodal Measurements of Brain Tissue Metabolism and Perfusion in a Neonatal Model of Hypoxic-Ischaemic Injury". In Advances in Experimental Medicine and Biology, 203–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-48238-1_32.
Texto completo da fonteHyder, Fahmeed, e Hal Blumenfeld. "Relationship between CMRO2 and Neuronal Activity". In Brain Energetics and Neuronal Activity, 173–94. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470020520.ch10.
Texto completo da fonteHyder, Fahmeed. "Deriving Changes in CMRO2 from Calibrated fMRI". In Brain Energetics and Neuronal Activity, 147–71. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470020520.ch9.
Texto completo da fonteSmith, David S. "Drug Induced Depression of CMRO2 During Aneurysm Clipping". In Anesthesia and the Central Nervous System, 329–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1610-7_27.
Texto completo da fonteKlementavicius, R., E. M. Nemoto e H. Yonas. "Basal Q10 for Cerebral Metabolic Rate for Oxygen (CMRO2) in Rats". In Advances in Experimental Medicine and Biology, 191–95. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0333-6_23.
Texto completo da fonteChen, Wei, Xiao-Hong Zhu e Kamil Ugurbil. "Imaging Cerebral Metabolic Rate of Oxygen Consumption (CMRO2) Using 17O NMR Approach at Ultrahigh Field". In Brain Energetics and Neuronal Activity, 125–46. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470020520.ch8.
Texto completo da fonteNemoto, Edwin M., John A. Melick e Peter Winter. "Active and Basal Cerebrometabolic Rate for Oxygen (CMRO2) After Complete Global Brain Ischemia in Rats". In Oxygen Transport to Tissue X, 391–96. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9510-6_46.
Texto completo da fonteNemoto, Edwin M., Richard Klementavicius e Howard Yonas. "Functional and Basal Cerebral Metabolic Rate for Oxygen (CMRO2) and its Relevance to the Pathogenesis and Therapy of Brain Injury". In Oxygen Transport to Tissue XX, 235–42. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4863-8_28.
Texto completo da fonte"CMRO2 Mapping by Calibrated fMRI". In Quantifying Morphology and Physiology of the Human Body Using MRI, 99–124. CRC Press, 2013. http://dx.doi.org/10.1201/b14814-8.
Texto completo da fonte"Mean cerebral blood flow (m-CBF) and cerebral oxygen utilization (CMRO2) in patients with ruptured intracranial aneurysm in the acute stage". In Timing of Aneurysm Surgery, 61–70. De Gruyter, 1985. http://dx.doi.org/10.1515/9783110858853-010.
Texto completo da fonteTrabalhos de conferências sobre o assunto "CMRO2"
Allen, M. S., T. J. Huppert e D. A. Boas. "Estimating CMRO2 with multi-modality imaging using a multi-compartment vascular model". In Biomedical Topical Meeting. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/bio.2006.tuc9.
Texto completo da fonteSakadžić, Sava, Mohammad A. Yaseen, Rajeshwer S. Jaswal, Emmanuel Roussakis, Anders M. Dale, Richard B. Buxton, Sergei A. Vinogradov, David A. Boas e Anna Devor. "Two-photon microscopy measurement of CMRO2 using periarteriolar PO2 gradients (Conference Presentation)". In Neural Imaging and Sensing, editado por Qingming Luo e Jun Ding. SPIE, 2017. http://dx.doi.org/10.1117/12.2253690.
Texto completo da fonteGagnon, Louis, Sava Sakadžić, Frédéric Lesage, Philippe Pouliot, Anders M. Dale, Anna Devor, Richard B. Buxton e David A. Boas. "Improving the calibrated fMRI estimation of CMRO2 with oxygen-sensitive Two-Photon Microscopy". In Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jw3a.18.
Texto completo da fonteChong, Sang Hoon, Yi Hong Ong, Mirna El Khatib, Srinivasa Rao Allu, Ashwin B. Parthasarathy, Joel H. Greenberg, Arjun G. Yodh e Sergei A. Vinogradov. "Real-time measurements of pO2 gradients, CBF, and CMRO2 in the rat brain during functional activation". In Neural Imaging and Sensing 2021, editado por Qingming Luo, Jun Ding e Ling Fu. SPIE, 2021. http://dx.doi.org/10.1117/12.2579418.
Texto completo da fonteYaseen, Mohammad A., Vivek J. Srinivasan, Sava Sakadžić, Sergei A. Vinogradov e David A. Boas. "Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents". In BiOS, editado por Nikiforos Kollias, Bernard Choi, Haishan Zeng, Reza S. Malek, Brian J. Wong, Justus F. R. Ilgner, Kenton W. Gregory et al. SPIE, 2010. http://dx.doi.org/10.1117/12.842904.
Texto completo da fonteFischer, A. J., D. D. Koleske e J. R. Wendt. "Surface plasmon enhanced emission from InGaN single-quantum-well light emitting diodes". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmoo2.
Texto completo da fonteMutter, Lukas, Vladimir Iakovlev, Andrei Caliman, Alexandru Mereuta, Alexei Sirbu e Eli Kapon. "1.3-µm Wavelength Coupled VCSEL Arrays Employing Patterned Tunnel Junction". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmrr2.
Texto completo da fonteKlotzkin, David, Peter G. Goetz, William S. Rabinovich, Mike S. Ferraro, Rita Mahon e Steven C. Binari. "Integrated Angle-of-Arrival Sensing and Simultaneous Bidirectional Communication Using a Cat’s eye Modulating Retroreflector". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmo2.
Texto completo da fonteTsai, Meng-Tsan, Cheng-Kuang Lee, Hsiang-Chieh Lee, Yih-Ming Wang, C. C. Yang e Chun-Pin Chiang. "Effective Indicators for Oral Cancer Diagnosis Based on Optical Coherence Tomography". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmr2.
Texto completo da fonteTan, Meng Peun, Ansas M. Kasten, Dominic F. Siriani, Joshua D. Sulkin e Kent D. Choquette. "Proton-Implanted 850-nm Photonic Crystal Vertical-Cavity Surface-Emitting Lasers with Improved Performance". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cmo2.
Texto completo da fonte