Teses / dissertações sobre o tema "Classification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Classification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Bogers, Toine, Willem Thoonen e den Bosch Antal van. "Expertise classification: Collaborative classification vs. automatic extraction". dLIST, 2006. http://hdl.handle.net/10150/105709.
Texto completo da fonteRavindra, Dilip. "Firmware and classification algorithm development for vehicle classification". Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1603749.
Texto completo da fonteVehicle classification is one of the active research topic in Intelligent Transport System. This project proposes an approach to classify the vehicles on freeway with respect to the size of the vehicle. This vehicle classification is based on threshold based algorithm. This system consists of two AMR magneto-resistive sensors connected to TI msp430 development board. The data collected from the two magneto resistive sensors is analyzed and supplied to threshold based algorithm to differentiate the vehicles. With the use of minimum number features extracted from the data it was possible to produce very efficient algorithm that is capable of differentiating the vehicles.
Phillips, Rhonda D. "A Probabilistic Classification Algorithm With Soft Classification Output". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26701.
Texto completo da fontePh. D.
Матусевич, Олександр Павлович. "Classification Fonts". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7344.
Texto completo da fonteЯрмак, Любов Павлівна, Любовь Павловна Ярмак, Liubov Pavlivna Yarmak, Оксана Робертівна Гладченко, Оксана Робертовна Гладченко e Oksana Robertivna Hladchenko. "Test classification". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/34677.
Texto completo da fonteTaylor, Paul Clifford. "Classification trees". Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306312.
Texto completo da fonteBonneau, Jean-Christophe. "La classification des contrats : essai d'une analyse systémique des classifications du Code civil". Grenoble, 2010. http://www.theses.fr/2010GREND017.
Texto completo da fonteThe classification of contracts as it is stated in the civil Code articles 1102 onwards structurally distinguishes itself from modern classifications having been added to it. Looking thoroughly at the matter of a global approach of classification, the classifications of the civil Code, separated from a legal regime which does not in fact depend on them and on notions which are foreign to it, such as the concept of “cause”, were considered in their connections of logic and complementarity. The existence of the chains of classifications, a new classification resulting from the coherent assembly of the various classifications provided for the civil Code, were brought to light thanks to a study aiming at understanding how these classifications are bound and harmonized. The features of the classification of contracts were then deducted from the very structure of the classifications of the civil Code combined in chains. These have for feature to reveal what constitutes the essence of the contract, by allowing to distinguish it from certain figures which try to assimilate to it but nevertheless distinguish themselves from it since the capacity of a legal object to become integrated into the chains of classifications is perceived as conditional on the contractual qualification itself. Considered as a preferred criterion of the definition of the contract, which can give rise to projects aiming at the elaboration of a body of European contract laws, the chains of classifications were then conceptualised in their connections with the variety of the named contracts. The chains of classifications absorb these contracts as well as their legal regime which can, consequently, be transposed into the unnamed contracts. Allowing a renewal of the groupings generally perceived, the chains of classifications bring a new light to the process of qualification of the contract. They contribute to specify the domain of the modification of the contract, and finally supply a foundation for the direct contractual action which is applied to the chains of contracts
Van, der Westhuizen Cornelius Stephanus. "Nearest hypersphere classification : a comparison with other classification techniques". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95839.
Texto completo da fonteENGLISH ABSTRACT: Classification is a widely used statistical procedure to classify objects into two or more classes according to some rule which is based on the input variables. Examples of such techniques are Linear and Quadratic Discriminant Analysis (LDA and QDA). However, classification of objects with these methods can get complicated when the number of input variables in the data become too large ( ≪ ), when the assumption of normality is no longer met or when classes are not linearly separable. Vapnik et al. (1995) introduced the Support Vector Machine (SVM), a kernel-based technique, which can perform classification in cases where LDA and QDA are not valid. SVM makes use of an optimal separating hyperplane and a kernel function to derive a rule which can be used for classifying objects. Another kernel-based technique was proposed by Tax and Duin (1999) where a hypersphere is used for domain description of a single class. The idea of a hypersphere for a single class can be easily extended to classification when dealing with multiple classes by just classifying objects to the nearest hypersphere. Although the theory of hyperspheres is well developed, not much research has gone into using hyperspheres for classification and the performance thereof compared to other classification techniques. In this thesis we will give an overview of Nearest Hypersphere Classification (NHC) as well as provide further insight regarding the performance of NHC compared to other classification techniques (LDA, QDA and SVM) under different simulation configurations. We begin with a literature study, where the theory of the classification techniques LDA, QDA, SVM and NHC will be dealt with. In the discussion of each technique, applications in the statistical software R will also be provided. An extensive simulation study is carried out to compare the performance of LDA, QDA, SVM and NHC for the two-class case. Various data scenarios will be considered in the simulation study. This will give further insight in terms of which classification technique performs better under the different data scenarios. Finally, the thesis ends with the comparison of these techniques on real-world data.
AFRIKAANSE OPSOMMING: Klassifikasie is ’n statistiese metode wat gebruik word om objekte in twee of meer klasse te klassifiseer gebaseer op ’n reël wat gebou is op die onafhanklike veranderlikes. Voorbeelde van hierdie metodes sluit in Lineêre en Kwadratiese Diskriminant Analise (LDA en KDA). Wanneer die aantal onafhanklike veranderlikes in ’n datastel te veel raak, die aanname van normaliteit nie meer geld nie of die klasse nie meer lineêr skeibaar is nie, raak die toepassing van metodes soos LDA en KDA egter te moeilik. Vapnik et al. (1995) het ’n kern gebaseerde metode bekendgestel, die Steun Vektor Masjien (SVM), wat wel vir klassifisering gebruik kan word in situasies waar metodes soos LDA en KDA misluk. SVM maak gebruik van ‘n optimale skeibare hipervlak en ’n kern funksie om ’n reël af te lei wat gebruik kan word om objekte te klassifiseer. ’n Ander kern gebaseerde tegniek is voorgestel deur Tax and Duin (1999) waar ’n hipersfeer gebruik kan word om ’n gebied beskrywing op te stel vir ’n datastel met net een klas. Dié idee van ’n enkele klas wat beskryf kan word deur ’n hipersfeer, kan maklik uitgebrei word na ’n multi-klas klassifikasie probleem. Dit kan gedoen word deur slegs die objekte te klassifiseer na die naaste hipersfeer. Alhoewel die teorie van hipersfere goed ontwikkeld is, is daar egter nog nie baie navorsing gedoen rondom die gebruik van hipersfere vir klassifikasie nie. Daar is ook nog nie baie gekyk na die prestasie van hipersfere in vergelyking met ander klassifikasie tegnieke nie. In hierdie tesis gaan ons ‘n oorsig gee van Naaste Hipersfeer Klassifikasie (NHK) asook verdere insig in terme van die prestasie van NHK in vergelyking met ander klassifikasie tegnieke (LDA, KDA en SVM) onder sekere simulasie konfigurasies. Ons gaan begin met ‘n literatuurstudie, waar die teorie van die klassifikasie tegnieke LDA, KDA, SVM en NHK behandel gaan word. Vir elke tegniek gaan toepassings in die statistiese sagteware R ook gewys word. ‘n Omvattende simulasie studie word uitgevoer om die prestasie van die tegnieke LDA, KDA, SVM en NHK te vergelyk. Die vergelyking word gedoen vir situasies waar die data slegs twee klasse het. ‘n Verskeidenheid van data situasies gaan ook ondersoek word om verdere insig te toon in terme van wanneer watter tegniek die beste vaar. Die tesis gaan afsluit deur die genoemde tegnieke toe te pas op praktiese datastelle.
Olin, Per. "Evaluation of text classification techniques for log file classification". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166641.
Texto completo da fonteAnteryd, Fredrik. "Information Classification in Swedish Governmental Agencies : Analysis of Classification Guidelines". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11493.
Texto completo da fonteLekic, Sasa, e Kasper Liu. "Intent classification through conversational interfaces : Classification within a small domain". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257863.
Texto completo da fonteNatural language processing och maskininlärning är ämnen som forskas mycket om idag. Dessa områden fortsätter växa och blir allt mer sammanvävda, nu mer än någonsin. Ett område är textklassifikation som är en gren av maskininlärningsapplikationer (ML) inom Natural language processing (NLP).Även om dessa ämnen har utvecklats de senaste åren, finns det fortfarande problem att ha i å tanke. Vissa är relaterade till rå datakraft som krävs för dessa tekniker medans andra problem handlar om mängden data som krävs.Forskningsfrågan i denna avhandling handlar om kunskapsbrist inom maskininlärningtekniker som Word2vec, Bidirectional encoder representations from transformers (BERT) och Support vector machine(SVM) klassificierare kan användas som klassification, givet endast små träningsset. Fortsättningsvis, vet man inte om dessa metoder fungerar på vanliga datorer.För att lösa forskningsproblemet, huvudsyftet för denna avhandling var att utveckla två separata konversationsgränssnitt som använder textklassifikationstekniker. Dessa gränssnitt, give med data, kan känna igen syftet bakom det, med andra ord, klassificera given datamening inom ett litet set av fördefinierade kategorier. Först, utvecklades ett konversationsgränssnitt som använder Word2vec och SVM klassificerare. För det andra, utvecklades ett gränssnitt som använder BERT och SVM klassificerare. Målet med denna avhandling var att avgöra om ett litet dataset kan användas för syftesklassifikation och med vad för träffsäkerhet, och om det kan användas på vanliga datorer.Forskningen i denna avhandling följde en standard tillämpad forskningsmetod. Huvudsyftet uppnåddes och de två konversationsgränssnitten utvecklades. Angående konversationsgränssnittet som använde Word2vec förtränat dataset och SVM klassificerar, visade resultatet att det kan användas för syftesklassifikation till en träffsäkerhet på 60%, och fungerar på vanliga datorer. Angående konversationsgränssnittet som använde BERT och SVM klassificerare, visade resultatet att det inte går att köra det på vanliga datorer. Träningen kördes i över 24 timmar och kraschade efter det.Resultatet visade att det är möjligt att skapa ett konversationsgränssnitt som kan klassificera syften, givet endast ett litet träningsset. Däremot, på grund av det begränsade träningssetet, och konsekvent låg träffsäkerhet, är denna konversationsgränssnitt inte lämplig för viktiga uppgifter, men kan användas för icke kritiska klassifikationsuppdrag.
Knudsen, Anne Kari. "Cancer pain classification". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kreftforskning og molekylær medisin, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16631.
Texto completo da fonteCancer pain classification – what should be the content of a future system? Pain is a subjective, complex and burdensome symptom which is very common in cancer patients. Despite existing treatment guidelines, several cancer patients still do not receive optimal pain treatment, in particular patients with advanced disease. The lack of a common classification system for cancer pain – a diagnostic tool – has been identified as one of several causes for this undertreatment. Motivated by these considerations, the international EU-funded ‘European Palliative Care Research Collaborative’ (EPCRC) was established. One of the main aims was to develop a classification system for three common symptoms in cancer patients with advanced disease: pain, depression, and cancer related weight loss. The papers included in this thesis have been performed in close collaboration with the EPCRC. The overall aim of the thesis is to contribute in the development process of an international classification system for pain in cancer patients by for example to identify factors that are important for describing pain and thus improve diagnostics and treatment of cancer pain. The main results in this thesis are: There are several systems for pain classification in cancer patients, but none of these are widely used in research or in clinical practice. Pain intensity and pathophysiology, the presence of breakthrough pain, psychological distress, and response to treatment are included in two or more of the six formal systems that were identified by systematically reviewing existing literature. Patients confirmed in interviews that the factors identified to be important for cancer pain in previous studies, were relevant also for their experience of pain. They emphasised physical and psychological aspects of being in pain, and sleep was considered important. In an European study where more than 2000 cancer patients using strong pain medication (opioids) participated, the following factors were identified to be of importance for the degree of pain intensity and pain relief: breakthrough pain, localisation of pain, opioid dose, use of weak pain medication, sleep, psychological distress, pathophysiology of pain, substance abuse, cancer diagnosis, and localisation of metastases. In an Italian study where 1800 cancer patients participated, the relevance of the five first factors listed above was confirmed. Furthermore, results from the same study showed that pain intensity and pain relief measured at study start as well as the presence of breakthrough pain, localisation of pain, age, and cancer diagnosis were factors that could predict pain after two weeks. At least three major challenges for the further development a future international classification system for cancer pain: to choose the most relevant factors (and how many) to include in the system, to achieve agreement on what outcomes to use, and finally to start using the classification system in clinical practice
Karnsund, Alice, e Elin Samuelsson. "Stem Cell Classification". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214731.
Texto completo da fonteEvans, Reuben James Emmanuel. "Clustering for Classification". The University of Waikato, 2007. http://hdl.handle.net/10289/2403.
Texto completo da fonteMagee, Christopher, e Weck Olivier de. "Complex System Classification". International Council On Systems Engineering (INCOSE), 2004. http://hdl.handle.net/1721.1/6753.
Texto completo da fonteEngineering Systems Division and Mechanical Engineering, Center for Innovation in Product Development
Richard, Keelan. "Lexical Aspectual Classification". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22906.
Texto completo da fonteKe, Shih Wen. "Automatic email classification". Thesis, University of Sunderland, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488788.
Texto completo da fonteMahrousa, Zakria Zaki. "Computerised electrocardiogram classification". Thesis, Cardiff University, 2004. http://orca.cf.ac.uk/55932/.
Texto completo da fonteRoberts, Paul J. "Automatic product classification". Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542272.
Texto completo da fonteRoach, M. J. "Video genre classification". Thesis, Swansea University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638674.
Texto completo da fonteRajan, Jebu Jacob. "Time series classification". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339538.
Texto completo da fonteGOMES, FELIPE REIS. "PRODUCT OFFERING CLASSIFICATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22577@1.
Texto completo da fonteEste trabalho apresenta o EasyLearn, um framework para apoiar o desenvolvimento de aplicações voltadas ao aprendizado supervisionado. O EasyLearn define uma camada intermediaria, de simples configuração e entendimento, entre a aplicação e o WEKA, um framework de aprendizado de máquina criado pela Universidade de Waikato. Todos os classificadores e filtros implementados pelo WEKA podem ser facilmente encapsulados para serem utilizados pelo EasyLearn. O EasyLearn recebe como entrada um conjunto de arquivos de configuração no formato XML contendo a definição do fluxo de processamento a ser executado, além da fonte de dados a ser processada, independente do formato. Sua saída é adaptável e pode ser configurada para produzir, por exemplo, relatórios de acurácia da classificação, a própria da fonte de dados classificada, ou o modelo de classificação já treinado. A arquitetura do EasyLearn foi definida após a análise detalhada dos processos de classificação, permitindo identificar inúmeras atividades em comum entre os três processos estudados aprendizado, avaliação e classificação). Através desta percepção e tomando as linguagens orientadas a objetos como inspiração, foi criado um framework capaz de comportar os processos de classificação e suas possíveis variações, além de permitir o reaproveitamento das configurações, através da implementação de herança e polimorfismo para os seus arquivos de configuração. A dissertação ilustra o uso do framework criado através de um estudo de caso completo sobre classificação de produtos do comércio eletrônico, incluindo a criação do corpus, engenharia de atributos e análise dos resultados obtidos.
This dissertation presents EasyLearn, a framework to support the development of supervised learning applications. EasyLearn dfines an intermediate layer, which is easy to configure and understand, between the application and WEKA, a machine learning framework created by the University of Waikato. All classifiers and filters implemented by WEKA can be easily encapsulated to be used by EasyLearn. EasyLearn receives as input a set of configuration files in XML format containing the definition of the processing flow to be executed, in addition to the data source to be classified, regardless of format. Its output is customizable and can be configured to produce classification accuracy reports, the classified data source, or the trained classification model. The architecture of EasyLearn was defined after a detailed analysis of the classification process, which identified a set of common activities among the three analyzed processes (learning, evaluation and classification). Through this insight and taking the object-oriented languages as inspiration, a framework was created which is able to support the classification processes and its variations, and which also allows reusing settings by implementing inheritance and polymorphism in their configuration files. This dissertation also illustrates the use of the created framework presenting a full case study about e-commerce product classification, including corpus creation, attribute engineering and result analysis.
Tang, Xiaoou. "Transform texture classification". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/41007.
Texto completo da fonteTsai, Filip, e Henrik Hellström. "Stem Cell Classification". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200606.
Texto completo da fonteAlmeida, Hugo Ricardo da Costa. "Automatic cymbal classification". Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/4923.
Texto completo da fonteMost of the research on automatic music transcription is focused on the transcription of pitched instruments, like the guitar and the piano. Little attention has been given to unpitched instruments, such as the drum kit, which is a collection of unpitched instruments. Yet, over the last few years this type of instrument started to garner more attention, perhaps due to increasing popularity of the drum kit in the western music. There has been work on automatic music transcription of the drum kit, especially the snare drum, bass drum, and hi-hat. Still, much work has to be done in order to achieve automatic music transcription of all unpitched instruments. An example of a type of unpitched instrument that has very particular acoustic characteristics and that has deserved almost no attention by the research community is the drum kit cymbals. A drum kit contains several cymbals and usually these are treated as a single instrument or are totally disregarded by automatic music classificators of unpitched instruments. We propose to fill this gap and as such, the goal of this dissertation is automatic music classification of drum kit cymbal events, and the identification of which class of cymbals they belong to. As stated, the majority of work developed on this area is mostly done with very different percussive instruments, like the snare drum, bass drum, and hi-hat. On the other hand, cymbals are very similar between them. Their geometry, type of alloys, spectral and sound traits shows us just that. Thus, the great achievement of this work is not only being able to correctly classify the different cymbals, but to be able to identify such similar instruments, which makes this task even harder.
Gama, João Manuel Portela da. "Combining classification algorithms". Doctoral thesis, Universidade do Porto. Reitoria, 1999. http://hdl.handle.net/10216/10017.
Texto completo da fonteA capacidade de um algoritmo de aprendizagem induzir, para um determinado problema, uma boa generalização depende da linguagem de representação usada para generalizar os exemplos. Como diferentes algoritmos usam diferentes linguagens de representação e estratégias de procura, são explorados espaços diferentes e são obtidos resultados diferentes. O problema de encontrar a representação mais adequada para o problema em causa, é uma área de investigação bastante activa. Nesta dissertação, em vez de procurar métodos que fazem o ajuste aos dados usando uma única linguagem de representação, apresentamos uma família de algoritmos, sob a designação genérica de Generalização em Cascata, onde o espaço de procura contem modelos que utilizam diferentes linguagens de representação. A ideia básica do método consiste em utilizar os algoritmos de aprendizagem em sequência. Em cada iteração ocorre um processo com dois passos. No primeiro passo, um classificador constrói um modelo. No segundo passo, o espaço definido pelos atributos é estendido pela inserção de novos atributos gerados utilizando este modelo. Este processo de construção de novos atributos constrói atributos na linguagem de representação do classificador usado para construir o modelo. Se posteriormente na sequência, um classificador utiliza um destes novos atributos para construir o seu modelo, a sua capacidade de representação foi estendida. Desta forma as restrições da linguagem de representação dosclassificadores utilizados a mais alto nível na sequência, são relaxadas pela incorporação de termos da linguagem derepresentação dos classificadores de base. Esta é a metodologia base subjacente ao sistema Ltree e à arquitecturada Generalização em Cascata.O método é apresentado segundo duas perspectivas. Numa primeira parte, é apresentado como uma estratégia paraconstruir árvores de decisão multivariadas. É apresentado o sistema Ltree que utiliza como operador para a construção de atributos um discriminante linear. ...
Початко, Тетяна Володимирівна, Татьяна Владимировна Початко, Tetiana Volodymyrivna Pochatko e І. В. Юрко. "Classification of spacecrafts". Thesis, Видавництво СумДУ, 2007. http://essuir.sumdu.edu.ua/handle/123456789/17453.
Texto completo da fonteSamuelsson, Elin, e Alice Karnsund. "Stem Cell Classification". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210867.
Texto completo da fonteSen, Suman Kumar Marron James Stephen. "Classification on manifolds". Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,2726.
Texto completo da fonteTitle from electronic title page (viewed Mar. 10, 2010). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics and Operations Research." Discipline: Statistics and Operations Research; Department/School: Statistics and Operations Research.
Payne, Scott Marshall. "Classification of aquifers". Diss., [Missoula, Mont.] : The University of Montana, 2010. http://etd.lib.umt.edu/theses/available/etd-03082010-112041.
Texto completo da fonteHendges, Graciela Rabuske. "Tackling genre classification". Florianópolis, SC, 2007. http://repositorio.ufsc.br/xmlui/handle/123456789/90448.
Texto completo da fonteMade available in DSpace on 2012-10-23T10:39:26Z (GMT). No. of bitstreams: 1 249271.pdf: 3171345 bytes, checksum: 00f207cece278de30d1f5b7fd246c496 (MD5)
Pesquisas recentes sobre comunicação científica têm revelado que desde o final dos anos de 1990 o uso de periódicos acadêmicos passou da mídia impressa para o mídia eletrônica (Tenopir, 2002, 2003; Tenopir & King, 2001, 2002) e, conseqüentemente, há previsões de que por volta de 2010 cerca de 80% dos periódicos terão apenas versões online (Harnad, 1998). Todavia, essas pesquisas mostram também que nem todas as disciplinas estão migrando para a Internet com a mesma velocidade. Enquanto que áreas como as Ciências da Informação, Arquivologia, Web design e Medicina têm mostrado interesse e preocupação em entnder e explicar esse fenômeno, em Lingüística Aplicada, particularmente em Análise de Gênero, os estudos ainda são escassos. Neste trabalho, portanto, procuro investigar em que medida o meio eletrônico (Internet) afeta o gênero artigo acadêmico no seu processo de mudança da mídia impressa para a mídia eletrônica. Mais especificamente, examino artigos acadêmicos em HTML nas áreas de Lingüística e Medicina com vistas a verificar se esse hypertexto é um gênero novo ou não. A abordagem metodológica adotada nesta pesquisa deriva da proposta de Askehave e Swales (2001) e de Swales (2004), na qual o critéro predominante para a classificação de um gênero é o propósito comunicativo, o qual só pode ser definido com base em uma análise textual tanto quanto em uma análise contextual. Dessa forma, neste estudo foram coletados e analisados dados textuais e contextuais e os resultados de ambas análises revelam que o artigo acadêmico em HTML é um gênero novo, cujo propósito comunicativo é realizado por hiperlinks e portanto, esse gênero é profundamente dependente da mídia eletrônica.
Gama, João Manuel Portela da. "Combining classification algorithms". Tese, Universidade do Porto. Reitoria, 1999. http://hdl.handle.net/10216/10017.
Texto completo da fonteA capacidade de um algoritmo de aprendizagem induzir, para um determinado problema, uma boa generalização depende da linguagem de representação usada para generalizar os exemplos. Como diferentes algoritmos usam diferentes linguagens de representação e estratégias de procura, são explorados espaços diferentes e são obtidos resultados diferentes. O problema de encontrar a representação mais adequada para o problema em causa, é uma área de investigação bastante activa. Nesta dissertação, em vez de procurar métodos que fazem o ajuste aos dados usando uma única linguagem de representação, apresentamos uma família de algoritmos, sob a designação genérica de Generalização em Cascata, onde o espaço de procura contem modelos que utilizam diferentes linguagens de representação. A ideia básica do método consiste em utilizar os algoritmos de aprendizagem em sequência. Em cada iteração ocorre um processo com dois passos. No primeiro passo, um classificador constrói um modelo. No segundo passo, o espaço definido pelos atributos é estendido pela inserção de novos atributos gerados utilizando este modelo. Este processo de construção de novos atributos constrói atributos na linguagem de representação do classificador usado para construir o modelo. Se posteriormente na sequência, um classificador utiliza um destes novos atributos para construir o seu modelo, a sua capacidade de representação foi estendida. Desta forma as restrições da linguagem de representação dosclassificadores utilizados a mais alto nível na sequência, são relaxadas pela incorporação de termos da linguagem derepresentação dos classificadores de base. Esta é a metodologia base subjacente ao sistema Ltree e à arquitecturada Generalização em Cascata.O método é apresentado segundo duas perspectivas. Numa primeira parte, é apresentado como uma estratégia paraconstruir árvores de decisão multivariadas. É apresentado o sistema Ltree que utiliza como operador para a construção de atributos um discriminante linear. ...
De, Hoedt Amanda Marie. "Clubfoot Image Classification". Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/4836.
Texto completo da fonteRida, Imad. "Temporal signals classification". Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR01/document.
Texto completo da fonteNowadays, there are a lot of applications related to machine vision and hearing which tried to reproduce human capabilities on machines. These problems are mainly amenable to a temporal signals classification problem, due our interest to this subject. In fact, we were interested to two distinct problems, humain gait recognition and audio signal recognition including both environmental and music ones. In the former, we have proposed a novel method to automatically learn and select the dynamic human body-parts to tackle the problem intra-class variations contrary to state-of-art methods which relied on predefined knowledge. To achieve it a group fused lasso algorithm is applied to segment the human body into parts with coherent motion value across the subjects. In the latter, while no conventional feature representation showed its ability to tackle both environmental and music problems, we propose to model audio classification as a supervised dictionary learning problem. This is done by learning a dictionary per class and encouraging the dissimilarity between the dictionaries by penalizing their pair- wise similarities. In addition the coefficients of a signal representation over these dictionaries is sought as sparse as possible. The experimental evaluations provide performing and encouraging results
Cisse, Mouhamadou Moustapha. "Efficient extreme classification". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066594/document.
Texto completo da fonteWe propose in this thesis new methods to tackle classification problems with a large number of labes also called extreme classification. The proposed approaches aim at reducing the inference conplexity in comparison with the classical methods such as one-versus-rest in order to make learning machines usable in a real life scenario. We propose two types of methods respectively for single label and multilable classification. The first proposed approach uses existing hierarchical information among the categories in order to learn low dimensional binary representation of the categories. The second type of approaches, dedicated to multilabel problems, adapts the framework of Bloom Filters to represent subsets of labels with sparse low dimensional binary vectors. In both approaches, binary classifiers are learned to predict the new low dimensional representation of the categories and several algorithms are also proposed to recover the set of relevant labels. Large scale experiments validate the methods
Cisse, Mouhamadou Moustapha. "Efficient extreme classification". Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066594.
Texto completo da fonteWe propose in this thesis new methods to tackle classification problems with a large number of labes also called extreme classification. The proposed approaches aim at reducing the inference conplexity in comparison with the classical methods such as one-versus-rest in order to make learning machines usable in a real life scenario. We propose two types of methods respectively for single label and multilable classification. The first proposed approach uses existing hierarchical information among the categories in order to learn low dimensional binary representation of the categories. The second type of approaches, dedicated to multilabel problems, adapts the framework of Bloom Filters to represent subsets of labels with sparse low dimensional binary vectors. In both approaches, binary classifiers are learned to predict the new low dimensional representation of the categories and several algorithms are also proposed to recover the set of relevant labels. Large scale experiments validate the methods
Sloof, Joël. "Classification Storage : A practical solution to file classification for information security". Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84553.
Texto completo da fonteI dagens informationsålder har data blivit den mest värdefulla tillgången i världen. Datatillgångar har blivit högt prioriterade mål för cyberkriminella och digital krigsföring. För att minska dessa hot, finns det ett behov av informationssäkerhet, lagar och lagstiftning. Det kan vara utmanande för organisationer att ha kontroll över sitt data för att följa lagar som kräver data klassificering för att lagra känsligt data. Målet med avhandlingen är att skapa ett system som gör det lättare för organisationer att hantera filklassificering och som ökar informationssäkerhets medvetande bland användare. Classification Storage systemet har designats, implementerats och evaluerats i avhandlingen. Classification Storage systemet är en Klient--Server lösning som tillsammans skapar ett virtuellt filsystem. Det virtuella filsystemet är presenterad som en nätverksenhet, där data lagras separat, beroende på den klassificeringen användare sätter. Classification Storage systemet är evaluerat genom en användbarhetsstudie. Studien visar att användare tycker att Classification Storage systemet är intuitivt, lätt att använda och användare blir mer informationssäkerhets medveten genom att använda systemet.
Watkins, Peter. "Classification of sheep category using chemical analysis and statistical classification algorithms". Thesis, Watkins, Peter (2011) Classification of sheep category using chemical analysis and statistical classification algorithms. PhD thesis, Murdoch University, 2011. https://researchrepository.murdoch.edu.au/id/eprint/6249/.
Texto completo da fonteBeghtol, Clare. "James Duff Brown's Subject Classification and Evaluation Methods for Classification Systems". dLIST, 2004. http://hdl.handle.net/10150/106250.
Texto completo da fonteBouzouita-Bayoudh, Inès. "Etude et extraction des règles associatives de classification en classification supervisée". Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20217.
Texto completo da fonteWithin the framework of this thesis, our interest is focused on classification accuracy and the optimalité of the traversal of the search. we introduced a new direct associative classification method called IGARC that extracts directly a classifier formed by generic associative classification rules from a training set in order to reduce the number of associative classification rules without jeopardizing the classification accuracy. Carried out experiments outlined that IGARC is highly competitive in comparison with popular classification methods.We also introduced a new classification approach called AFORTIORI. We address the problem of generating relevant frequent and rare classification rules. Our work is motivated by the long-standing open question of devising an efficient algorithm for finding rules with low support. A particularly relevant field for rare item sets and rare associative classification rules is medical diagnosis. The proposed approach is based on the cover set classical algorithm. It allows obtaining frequent and rare rules while exploring the search space in a depth first manner. To this end, AFORTIORI adopts the covering set algorithm and uses the cover measure in order to guide the traversal of the search space and to generate the most interesting rules for the classification framework even rare ones. We describe our method and provide comparisons with common methods of associative classification on standard benchmark data set
Johansson, Henrik. "Video Flow Classification : Feature Based Classification Using the Tree-based Approach". Thesis, Karlstads universitet, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-43012.
Texto completo da fonteHITS, 4707
Palanisamy, Senthil Kumar. "Association rule based classification". Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050306-131517/.
Texto completo da fonteKeywords: Itemset Pruning, Association Rules, Adaptive Minimal Support, Associative Classification, Classification. Includes bibliographical references (p.70-74).
Landt, Hermine. "The classification of blazars". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967456185.
Texto completo da fonteArcher, Claude. "Classification of group extensions". Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211419.
Texto completo da fonteXie, Wei University of Ballarat. "Classification of HTML Documents". University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/12774.
Texto completo da fonteMaster of Computing
Vazey, Megan Margaret. "Case-driven collaborative classification". Doctoral thesis, Australia : Macquarie University, 2007. http://hdl.handle.net/1959.14/264.
Texto completo da fonte"Submitted January 27 2007, revised July 27 2007".
Bibliography: p. 281-304.
Mode of access: World Wide Web.
xiv, 487 p., bound ill. (some col.)
McGuire, Peter Frederick. "Image classification using eigenpaxels". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0002/NQ41239.pdf.
Texto completo da fonteFazeli, Goldisse. "Classification and discriminant analysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ47800.pdf.
Texto completo da fonteLiang, Fang. "Hyperplane-based classification techniques". Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3284447.
Texto completo da fontede, Roos Dolf. "Spectral analysis classification sonars". Thesis, University of Canterbury. Electrical Engineering, 1986. http://hdl.handle.net/10092/5575.
Texto completo da fonte