Artigos de revistas sobre o tema "Classification of biomedical time series"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Classification of biomedical time series".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ramanujam, E., e S. Padmavathi. "Genetic time series motif discovery for time series classification". International Journal of Biomedical Engineering and Technology 31, n.º 1 (2019): 47. http://dx.doi.org/10.1504/ijbet.2019.101051.
Texto completo da fonteJin, Lin-peng, e Jun Dong. "Ensemble Deep Learning for Biomedical Time Series Classification". Computational Intelligence and Neuroscience 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/6212684.
Texto completo da fonteIvaturi, Praharsh, Matteo Gadaleta, Amitabh C. Pandey, Michael Pazzani, Steven R. Steinhubl e Giorgio Quer. "A Comprehensive Explanation Framework for Biomedical Time Series Classification". IEEE Journal of Biomedical and Health Informatics 25, n.º 7 (julho de 2021): 2398–408. http://dx.doi.org/10.1109/jbhi.2021.3060997.
Texto completo da fonteWang, Jin, Ping Liu, Mary F. H. She, Saeid Nahavandi e Abbas Kouzani. "Bag-of-words representation for biomedical time series classification". Biomedical Signal Processing and Control 8, n.º 6 (novembro de 2013): 634–44. http://dx.doi.org/10.1016/j.bspc.2013.06.004.
Texto completo da fonteKu-Maldonado, Carlos Alejandro, e Erik Molino-Minero-Re. "Performance Evaluation of Biomedical Time Series Transformation Methods for Classification Tasks". Revista Mexicana de Ingeniería Biomédica 44, n.º 4 (17 de agosto de 2023): 105–16. http://dx.doi.org/10.17488/rmib.44.4.7.
Texto completo da fonteGupta, R., A. Mittal, K. Singh, V. Narang e S. Roy. "Time-series approach to protein classification problem". IEEE Engineering in Medicine and Biology Magazine 28, n.º 4 (julho de 2009): 32–37. http://dx.doi.org/10.1109/memb.2009.932903.
Texto completo da fonteWang, Will Ke, Ina Chen, Leeor Hershkovich, Jiamu Yang, Ayush Shetty, Geetika Singh, Yihang Jiang et al. "A Systematic Review of Time Series Classification Techniques Used in Biomedical Applications". Sensors 22, n.º 20 (20 de outubro de 2022): 8016. http://dx.doi.org/10.3390/s22208016.
Texto completo da fonteLemus, Mariano, João P. Beirão, Nikola Paunković, Alexandra M. Carvalho e Paulo Mateus. "Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data". Entropy 22, n.º 1 (30 de dezembro de 2019): 49. http://dx.doi.org/10.3390/e22010049.
Texto completo da fonteAthavale, Yashodhan, Sridhar Krishnan e Aziz Guergachi. "Pattern Classification of Signals Using Fisher Kernels". Mathematical Problems in Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/467175.
Texto completo da fonteCarreiro, André V., Orlando Anunciação, João A. Carriço e Sara C. Madeira. "Prognostic Prediction through Biclustering-Based Classification of Clinical Gene Expression Time Series". Journal of Integrative Bioinformatics 8, n.º 3 (1 de dezembro de 2011): 73–89. http://dx.doi.org/10.1515/jib-2011-175.
Texto completo da fontePiepjohn, Patricia, Christin Bald, Gregor Kuhlenbäumer, Jos Steffen Becktepe, Günther Deuschl e Gerhard Schmidt. "Real-time classification of movement patterns of tremor patients". Biomedical Engineering / Biomedizinische Technik 67, n.º 2 (24 de fevereiro de 2022): 119–30. http://dx.doi.org/10.1515/bmt-2021-0140.
Texto completo da fonteFulcher, Ben D., Max A. Little e Nick S. Jones. "Highly comparative time-series analysis: the empirical structure of time series and their methods". Journal of The Royal Society Interface 10, n.º 83 (6 de junho de 2013): 20130048. http://dx.doi.org/10.1098/rsif.2013.0048.
Texto completo da fonteGamidullaeva, Leyla Ayvarovna, e Vsevolod Chernyshenko. "Using Decision-Making Block of Computer-Based Intelligent Biomedical Avatar for Applied Research in Bioinformatics". International Journal of Applied Research in Bioinformatics 9, n.º 2 (julho de 2019): 24–34. http://dx.doi.org/10.4018/ijarb.2019070102.
Texto completo da fonteAlarcón, Ángel Serrano, Natividad Martínez Madrid, Ralf Seepold e Juan Antonio Ortega Ramirez. "Main requirements of end-to-end deep learning models for biomedical time series classification in healthcare environments". Procedia Computer Science 207 (2022): 3038–46. http://dx.doi.org/10.1016/j.procs.2022.09.532.
Texto completo da fonteCarreiro, André V., Artur J. Ferreira, Mário A. T. Figueiredo e Sara C. Madeira. "Towards a Classification Approach using Meta-Biclustering: Impact of Discretization in the Analysis of Expression Time Series". Journal of Integrative Bioinformatics 9, n.º 3 (1 de dezembro de 2012): 105–20. http://dx.doi.org/10.1515/jib-2012-207.
Texto completo da fonteZhang, Yinghui, Fengyuan Zhang, Yantong Cui e Ruoci Ning. "CLASSIFICATION OF BIOMEDICAL IMAGES USING CONTENT BASED IMAGE RETRIEVAL SYSTEMS". International Journal of Engineering Technologies and Management Research 5, n.º 2 (8 de fevereiro de 2020): 181–89. http://dx.doi.org/10.29121/ijetmr.v5.i2.2018.161.
Texto completo da fonteLipponen, Jukka A., e Mika P. Tarvainen. "A robust algorithm for heart rate variability time series artefact correction using novel beat classification". Journal of Medical Engineering & Technology 43, n.º 3 (3 de abril de 2019): 173–81. http://dx.doi.org/10.1080/03091902.2019.1640306.
Texto completo da fonteJackson, Rhydon, Debra Knisley, Cecilia McIntosh e Phillip Pfeiffer. "Predicting Flavonoid UGT Regioselectivity". Advances in Bioinformatics 2011 (30 de junho de 2011): 1–15. http://dx.doi.org/10.1155/2011/506583.
Texto completo da fonteJO, YONG-UN, e DO-CHANG OH. "REAL-TIME HAND GESTURE CLASSIFICATION USING CRNN WITH SCALE AVERAGE WAVELET TRANSFORM". Journal of Mechanics in Medicine and Biology 20, n.º 10 (dezembro de 2020): 2040028. http://dx.doi.org/10.1142/s021951942040028x.
Texto completo da fonteGao, Yongxiang, Zhi Zhao, Yimin Chen, Gehendra Mahara, Jialing Huang, Zhuochen Lin e Jinxin Zhang. "Automatic epileptic seizure classification in multichannel EEG time series with linear discriminant analysis". Technology and Health Care 28, n.º 1 (13 de janeiro de 2020): 23–33. http://dx.doi.org/10.3233/thc-181548.
Texto completo da fonteChambon, Stanislas, Mathieu N. Galtier, Pierrick J. Arnal, Gilles Wainrib e Alexandre Gramfort. "A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, n.º 4 (abril de 2018): 758–69. http://dx.doi.org/10.1109/tnsre.2018.2813138.
Texto completo da fonteArami, Arash, Antonios Poulakakis-Daktylidis, Yen F. Tai e Etienne Burdet. "Prediction of Gait Freezing in Parkinsonian Patients: A Binary Classification Augmented With Time Series Prediction". IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, n.º 9 (setembro de 2019): 1909–19. http://dx.doi.org/10.1109/tnsre.2019.2933626.
Texto completo da fonteDursun, Gizem, Dunja Bijelić, Neşe Ayşit, Burcu Kurt Vatandaşlar, Lidija Radenović, Abdulkerim Çapar, Bilal Ersen Kerman, Pavle R. Andjus, Andrej Korenić e Ufuk Özkaya. "Combined segmentation and classification-based approach to automated analysis of biomedical signals obtained from calcium imaging". PLOS ONE 18, n.º 2 (6 de fevereiro de 2023): e0281236. http://dx.doi.org/10.1371/journal.pone.0281236.
Texto completo da fonteLiu, Chenxi, Israel Cohen, Rotem Vishinkin e Hossam Haick. "Nanomaterial-Based Sensor Array Signal Processing and Tuberculosis Classification Using Machine Learning". Journal of Low Power Electronics and Applications 13, n.º 2 (29 de maio de 2023): 39. http://dx.doi.org/10.3390/jlpea13020039.
Texto completo da fonteArunachalam, S. P., S. Kapa, S. K. Mulpuru, P. A. Friedman e E. G. Tolkacheva. "Improved Multiscale Entropy Technique with Nearest-Neighbor Moving-Average Kernel for Nonlinear and Nonstationary Short-Time Biomedical Signal Analysis". Journal of Healthcare Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/8632436.
Texto completo da fonteTripathy, R. K., e U. Rajendra Acharya. "Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework". Biocybernetics and Biomedical Engineering 38, n.º 4 (2018): 890–902. http://dx.doi.org/10.1016/j.bbe.2018.05.005.
Texto completo da fonteCuesta-Frau, David, Juan Pablo Murillo-Escobar, Diana Alexandra Orrego e Edilson Delgado-Trejos. "Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications". Entropy 21, n.º 4 (10 de abril de 2019): 385. http://dx.doi.org/10.3390/e21040385.
Texto completo da fonteWang, Jialing, Shiwei Cheng, Jieming Tian e Yuefan Gao. "A 2D CNN-LSTM hybrid algorithm using time series segments of EEG data for motor imagery classification". Biomedical Signal Processing and Control 83 (maio de 2023): 104627. http://dx.doi.org/10.1016/j.bspc.2023.104627.
Texto completo da fonteBAI, G. MERCY, e P. VENKADESH. "TAYLOR–MONARCH BUTTERFLY OPTIMIZATION-BASED SUPPORT VECTOR MACHINE FOR ACUTE LYMPHOBLASTIC LEUKEMIA CLASSIFICATION WITH BLOOD SMEAR MICROSCOPIC IMAGES". Journal of Mechanics in Medicine and Biology 21, n.º 06 (21 de junho de 2021): 2150041. http://dx.doi.org/10.1142/s021951942150041x.
Texto completo da fonteChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura e Ming-Dar Tsai. "HUMAN INDUCED PLURIPOTENT STEM CELL REGION DETECTION IN BRIGHT-FIELD MICROSCOPY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS". Biomedical Engineering: Applications, Basis and Communications 31, n.º 02 (abril de 2019): 1950009. http://dx.doi.org/10.4015/s1016237219500091.
Texto completo da fonteResta, Michele, Anna Monreale e Davide Bacciu. "Occlusion-Based Explanations in Deep Recurrent Models for Biomedical Signals". Entropy 23, n.º 8 (17 de agosto de 2021): 1064. http://dx.doi.org/10.3390/e23081064.
Texto completo da fonteDissanayake, W. M. N. D., e Maheshi B. Dissanayake. "A Novel LSTM-based Data Synthesis Approach for Performance Improvement in Detecting Epileptic Seizures". WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE 20 (10 de outubro de 2023): 132–39. http://dx.doi.org/10.37394/23208.2023.20.13.
Texto completo da fonteZhu, Mengyun, Ximin Fan, Weijing Liu, Jianying Shen, Wei Chen, Yawei Xu e Xuejing Yu. "Artificial Intelligence-Based Echocardiographic Left Atrial Volume Measurement with Pulmonary Vein Comparison". Journal of Healthcare Engineering 2021 (6 de dezembro de 2021): 1–11. http://dx.doi.org/10.1155/2021/1336762.
Texto completo da fonteSzigeti, Balázs, Ajinkya Deogade e Barbara Webb. "Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states". Journal of The Royal Society Interface 12, n.º 113 (dezembro de 2015): 20150899. http://dx.doi.org/10.1098/rsif.2015.0899.
Texto completo da fonteChatterjee, Shre Kumar, Saptarshi Das, Koushik Maharatna, Elisa Masi, Luisa Santopolo, Stefano Mancuso e Andrea Vitaletti. "Exploring strategies for classification of external stimuli using statistical features of the plant electrical response". Journal of The Royal Society Interface 12, n.º 104 (março de 2015): 20141225. http://dx.doi.org/10.1098/rsif.2014.1225.
Texto completo da fonteUyulan, Caglar, Türker Tekin Ergüzel e Nevzat Tarhan. "Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification". Biomedical Engineering / Biomedizinische Technik 64, n.º 5 (25 de setembro de 2019): 529–42. http://dx.doi.org/10.1515/bmt-2018-0105.
Texto completo da fonteMakhir, Abdelmalek, My Hachem El Yousfi Alaoui e Larbi Belarbi. "Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models". International Journal of Online and Biomedical Engineering (iJOE) 20, n.º 03 (27 de fevereiro de 2024): 154–65. http://dx.doi.org/10.3991/ijoe.v20i03.45769.
Texto completo da fonteCuesta-Frau, David, Jakub Schneider, Eduard Bakštein, Pavel Vostatek, Filip Spaniel e Daniel Novák. "Classification of Actigraphy Records from Bipolar Disorder Patients Using Slope Entropy: A Feasibility Study". Entropy 22, n.º 11 (1 de novembro de 2020): 1243. http://dx.doi.org/10.3390/e22111243.
Texto completo da fonteKhorasani, Abed, Mohammad Reza Daliri e Mohammad Pooyan. "Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model". Biomedical Engineering / Biomedizinische Technik 61, n.º 1 (1 de fevereiro de 2016): 119–26. http://dx.doi.org/10.1515/bmt-2014-0089.
Texto completo da fonteBALOGLU, ULAS BARAN, e ÖZAL YILDIRIM. "CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION". Journal of Mechanics in Medicine and Biology 19, n.º 01 (fevereiro de 2019): 1940005. http://dx.doi.org/10.1142/s0219519419400050.
Texto completo da fonteBogdanov, M. R., G. R. Shakhmametova e N. N. Oskin. "Possibility of Using the Attention Mechanism in Multimodal Recognition of Cardiovascular Diseases". Programmnaya Ingeneria 15, n.º 11 (18 de novembro de 2024): 578–88. http://dx.doi.org/10.17587/prin.15.578-588.
Texto completo da fonteAmarantidis, Lampros Chrysovalantis, e Daniel Abásolo. "Interpretation of Entropy Algorithms in the Context of Biomedical Signal Analysis and Their Application to EEG Analysis in Epilepsy". Entropy 21, n.º 9 (27 de agosto de 2019): 840. http://dx.doi.org/10.3390/e21090840.
Texto completo da fonteZhu, Lingxia, Zhiping Xu e Ting Fang. "Analysis of Cardiac Ultrasound Images of Critically Ill Patients Using Deep Learning". Journal of Healthcare Engineering 2021 (27 de outubro de 2021): 1–8. http://dx.doi.org/10.1155/2021/6050433.
Texto completo da fonteJing, Junyuan, Jing Zhang, Aiping Liu, Min Gao, Ruobing Qian e Xun Chen. "ECG-Based Multiclass Arrhythmia Classification Using Beat-Level Fusion Network". Journal of Healthcare Engineering 2023 (29 de novembro de 2023): 1–10. http://dx.doi.org/10.1155/2023/1755121.
Texto completo da fonteHeo, Suncheol, Jae Yong Yu, Eun Ae Kang, Hyunah Shin, Kyeongmin Ryu, Chungsoo Kim, Yebin Chegal et al. "Development and Verification of Time-Series Deep Learning for Drug-Induced Liver Injury Detection in Patients Taking Angiotensin II Receptor Blockers: A Multicenter Distributed Research Network Approach". Healthcare Informatics Research 29, n.º 3 (31 de julho de 2023): 246–55. http://dx.doi.org/10.4258/hir.2023.29.3.246.
Texto completo da fonteNigat, Tsedenya Debebe, Tilahun Melak Sitote e Berihun Molla Gedefaw. "Fungal Skin Disease Classification Using the Convolutional Neural Network". Journal of Healthcare Engineering 2023 (30 de maio de 2023): 1–9. http://dx.doi.org/10.1155/2023/6370416.
Texto completo da fonteCuesta-Frau, David, Daniel Novák, Vacláv Burda, Daniel Abasolo, Tricia Adjei, Manuel Varela, Borja Vargas et al. "Influence of Duodenal–Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods". Complexity 2019 (14 de fevereiro de 2019): 1–10. http://dx.doi.org/10.1155/2019/6070518.
Texto completo da fonteAhammed, Kawser, e Mosabber Uddin Ahmed. "QUANTIFICATION OF MENTAL STRESS USING COMPLEXITY ANALYSIS OF EEG SIGNALS". Biomedical Engineering: Applications, Basis and Communications 32, n.º 02 (abril de 2020): 2050011. http://dx.doi.org/10.4015/s1016237220500118.
Texto completo da fonteAlrowais, Fadwa, Faiz Abdullah Alotaibi, Abdulkhaleq Q. A. Hassan, Radwa Marzouk, Mrim M. Alnfiai e Ahmed Sayed. "Enhanced Pelican Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Classification on Breast Histopathology Images". Biomimetics 8, n.º 7 (10 de novembro de 2023): 538. http://dx.doi.org/10.3390/biomimetics8070538.
Texto completo da fonteMaheshwari, Saumil, Aman Agarwal, Anupam Shukla e Ritu Tiwari. "A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease". Biomedical Engineering / Biomedizinische Technik 65, n.º 4 (27 de agosto de 2020): 435–46. http://dx.doi.org/10.1515/bmt-2018-0206.
Texto completo da fonte