Literatura científica selecionada sobre o tema "Classification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Classification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Classification"
Thomas, Pravin, Anand Kumar, Ahamed Subir, Brian E. McGeeney, Madhav Raje, Divyani Garg, Chaithra D. Aroor, Arunmozhimaran Elavarasi e Kris Castle. "Classification of Head, Neck, and Face Pains First Edition (WHS-MCH1): Position paper of the WHS Classification Committee". Headache Medicine Connections 1, n.º 1 (20 de agosto de 2021): 1–108. http://dx.doi.org/10.52828/hmc.v1i1.classifications.
Texto completo da fonteWillatt, D. J., M. S. McCormick, R. P. Morton e P. M. Stell. "Staging of Maxillary Cancer". Annals of Otology, Rhinology & Laryngology 96, n.º 2 (março de 1987): 137–41. http://dx.doi.org/10.1177/000348948709600201.
Texto completo da fonteJacob, Elin K. "Proposal for a Classification of Classifications built on Beghtol’s Distinction between “Naïve Classification” and “Professional Classification”". KNOWLEDGE ORGANIZATION 37, n.º 2 (2010): 111–20. http://dx.doi.org/10.5771/0943-7444-2010-2-111.
Texto completo da fonteFeleke, Tekabe Legesse. "Ethiosemitic languages: Classifications and classification determinants". Ampersand 8 (2021): 100074. http://dx.doi.org/10.1016/j.amper.2021.100074.
Texto completo da fonteDozic, Slobodan, Dubravka Cvetkovic-Dozic, Milica Skender-Gazibara e Branko Dozic. "Review of the World Health Organization classification of tumors of the nervous system". Archive of Oncology 10, n.º 3 (2002): 175–77. http://dx.doi.org/10.2298/aoo0203175d.
Texto completo da fonteFedorova, Natalia. "BASIC CLASSIFIERS OF FORMAL CLASSIFICATION THEORY OF TECHNICAL SYSTEMS: HIERARCHIES, VECTORS AND MATRICES, BANDS". Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics 2021, n.º 3 (30 de julho de 2021): 28–40. http://dx.doi.org/10.24143/2072-9502-2021-3-28-40.
Texto completo da fonteVu, Catphuong, e David Gendelberg. "Classifications in Brief: AO Thoracolumbar Classification System". Clinical Orthopaedics & Related Research 478, n.º 2 (9 de dezembro de 2019): 434–40. http://dx.doi.org/10.1097/corr.0000000000001086.
Texto completo da fonteDi Lauro, Salvatore, Mustafa R. Kadhim, David G. Charteris e J. Carlos Pastor. "Classifications for Proliferative Vitreoretinopathy (PVR): An Analysis of Their Use in Publications over the Last 15 Years". Journal of Ophthalmology 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7807596.
Texto completo da fonteKozhanov, Anton L., e Oleg V. Voevodin. "ON RECLAMATION PUMPING STATIONS CLASSIFICATION". Land Reclamation and Hydraulic Engineering 14, n.º 3 (2024): 261–83. http://dx.doi.org/10.31774/2712-9357-2024-14-3-261-283.
Texto completo da fonteFortune, Nicola, Stephanie Short e Richard Madden. "Building a statistical classification: A new tool for classification development and testing". Statistical Journal of the IAOS 36, n.º 4 (25 de novembro de 2020): 1213–21. http://dx.doi.org/10.3233/sji-200633.
Texto completo da fonteTeses / dissertações sobre o assunto "Classification"
Bogers, Toine, Willem Thoonen e den Bosch Antal van. "Expertise classification: Collaborative classification vs. automatic extraction". dLIST, 2006. http://hdl.handle.net/10150/105709.
Texto completo da fonteRavindra, Dilip. "Firmware and classification algorithm development for vehicle classification". Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1603749.
Texto completo da fonteVehicle classification is one of the active research topic in Intelligent Transport System. This project proposes an approach to classify the vehicles on freeway with respect to the size of the vehicle. This vehicle classification is based on threshold based algorithm. This system consists of two AMR magneto-resistive sensors connected to TI msp430 development board. The data collected from the two magneto resistive sensors is analyzed and supplied to threshold based algorithm to differentiate the vehicles. With the use of minimum number features extracted from the data it was possible to produce very efficient algorithm that is capable of differentiating the vehicles.
Phillips, Rhonda D. "A Probabilistic Classification Algorithm With Soft Classification Output". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26701.
Texto completo da fontePh. D.
Матусевич, Олександр Павлович. "Classification Fonts". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7344.
Texto completo da fonteЯрмак, Любов Павлівна, Любовь Павловна Ярмак, Liubov Pavlivna Yarmak, Оксана Робертівна Гладченко, Оксана Робертовна Гладченко e Oksana Robertivna Hladchenko. "Test classification". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/34677.
Texto completo da fonteTaylor, Paul Clifford. "Classification trees". Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306312.
Texto completo da fonteBonneau, Jean-Christophe. "La classification des contrats : essai d'une analyse systémique des classifications du Code civil". Grenoble, 2010. http://www.theses.fr/2010GREND017.
Texto completo da fonteThe classification of contracts as it is stated in the civil Code articles 1102 onwards structurally distinguishes itself from modern classifications having been added to it. Looking thoroughly at the matter of a global approach of classification, the classifications of the civil Code, separated from a legal regime which does not in fact depend on them and on notions which are foreign to it, such as the concept of “cause”, were considered in their connections of logic and complementarity. The existence of the chains of classifications, a new classification resulting from the coherent assembly of the various classifications provided for the civil Code, were brought to light thanks to a study aiming at understanding how these classifications are bound and harmonized. The features of the classification of contracts were then deducted from the very structure of the classifications of the civil Code combined in chains. These have for feature to reveal what constitutes the essence of the contract, by allowing to distinguish it from certain figures which try to assimilate to it but nevertheless distinguish themselves from it since the capacity of a legal object to become integrated into the chains of classifications is perceived as conditional on the contractual qualification itself. Considered as a preferred criterion of the definition of the contract, which can give rise to projects aiming at the elaboration of a body of European contract laws, the chains of classifications were then conceptualised in their connections with the variety of the named contracts. The chains of classifications absorb these contracts as well as their legal regime which can, consequently, be transposed into the unnamed contracts. Allowing a renewal of the groupings generally perceived, the chains of classifications bring a new light to the process of qualification of the contract. They contribute to specify the domain of the modification of the contract, and finally supply a foundation for the direct contractual action which is applied to the chains of contracts
Van, der Westhuizen Cornelius Stephanus. "Nearest hypersphere classification : a comparison with other classification techniques". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95839.
Texto completo da fonteENGLISH ABSTRACT: Classification is a widely used statistical procedure to classify objects into two or more classes according to some rule which is based on the input variables. Examples of such techniques are Linear and Quadratic Discriminant Analysis (LDA and QDA). However, classification of objects with these methods can get complicated when the number of input variables in the data become too large ( ≪ ), when the assumption of normality is no longer met or when classes are not linearly separable. Vapnik et al. (1995) introduced the Support Vector Machine (SVM), a kernel-based technique, which can perform classification in cases where LDA and QDA are not valid. SVM makes use of an optimal separating hyperplane and a kernel function to derive a rule which can be used for classifying objects. Another kernel-based technique was proposed by Tax and Duin (1999) where a hypersphere is used for domain description of a single class. The idea of a hypersphere for a single class can be easily extended to classification when dealing with multiple classes by just classifying objects to the nearest hypersphere. Although the theory of hyperspheres is well developed, not much research has gone into using hyperspheres for classification and the performance thereof compared to other classification techniques. In this thesis we will give an overview of Nearest Hypersphere Classification (NHC) as well as provide further insight regarding the performance of NHC compared to other classification techniques (LDA, QDA and SVM) under different simulation configurations. We begin with a literature study, where the theory of the classification techniques LDA, QDA, SVM and NHC will be dealt with. In the discussion of each technique, applications in the statistical software R will also be provided. An extensive simulation study is carried out to compare the performance of LDA, QDA, SVM and NHC for the two-class case. Various data scenarios will be considered in the simulation study. This will give further insight in terms of which classification technique performs better under the different data scenarios. Finally, the thesis ends with the comparison of these techniques on real-world data.
AFRIKAANSE OPSOMMING: Klassifikasie is ’n statistiese metode wat gebruik word om objekte in twee of meer klasse te klassifiseer gebaseer op ’n reël wat gebou is op die onafhanklike veranderlikes. Voorbeelde van hierdie metodes sluit in Lineêre en Kwadratiese Diskriminant Analise (LDA en KDA). Wanneer die aantal onafhanklike veranderlikes in ’n datastel te veel raak, die aanname van normaliteit nie meer geld nie of die klasse nie meer lineêr skeibaar is nie, raak die toepassing van metodes soos LDA en KDA egter te moeilik. Vapnik et al. (1995) het ’n kern gebaseerde metode bekendgestel, die Steun Vektor Masjien (SVM), wat wel vir klassifisering gebruik kan word in situasies waar metodes soos LDA en KDA misluk. SVM maak gebruik van ‘n optimale skeibare hipervlak en ’n kern funksie om ’n reël af te lei wat gebruik kan word om objekte te klassifiseer. ’n Ander kern gebaseerde tegniek is voorgestel deur Tax and Duin (1999) waar ’n hipersfeer gebruik kan word om ’n gebied beskrywing op te stel vir ’n datastel met net een klas. Dié idee van ’n enkele klas wat beskryf kan word deur ’n hipersfeer, kan maklik uitgebrei word na ’n multi-klas klassifikasie probleem. Dit kan gedoen word deur slegs die objekte te klassifiseer na die naaste hipersfeer. Alhoewel die teorie van hipersfere goed ontwikkeld is, is daar egter nog nie baie navorsing gedoen rondom die gebruik van hipersfere vir klassifikasie nie. Daar is ook nog nie baie gekyk na die prestasie van hipersfere in vergelyking met ander klassifikasie tegnieke nie. In hierdie tesis gaan ons ‘n oorsig gee van Naaste Hipersfeer Klassifikasie (NHK) asook verdere insig in terme van die prestasie van NHK in vergelyking met ander klassifikasie tegnieke (LDA, KDA en SVM) onder sekere simulasie konfigurasies. Ons gaan begin met ‘n literatuurstudie, waar die teorie van die klassifikasie tegnieke LDA, KDA, SVM en NHK behandel gaan word. Vir elke tegniek gaan toepassings in die statistiese sagteware R ook gewys word. ‘n Omvattende simulasie studie word uitgevoer om die prestasie van die tegnieke LDA, KDA, SVM en NHK te vergelyk. Die vergelyking word gedoen vir situasies waar die data slegs twee klasse het. ‘n Verskeidenheid van data situasies gaan ook ondersoek word om verdere insig te toon in terme van wanneer watter tegniek die beste vaar. Die tesis gaan afsluit deur die genoemde tegnieke toe te pas op praktiese datastelle.
Olin, Per. "Evaluation of text classification techniques for log file classification". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166641.
Texto completo da fonteAnteryd, Fredrik. "Information Classification in Swedish Governmental Agencies : Analysis of Classification Guidelines". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11493.
Texto completo da fonteLivros sobre o assunto "Classification"
Library of Congress. Subject Cataloging Division. Classification. 3a ed. Washington, D.C: The Library, 1989.
Encontre o texto completo da fonteLibrary of Congress. Subject Cataloging Division. Classification. Washington: The Library, 1988.
Encontre o texto completo da fonteSabzwari, Ghaniul Akram. Classification. Karachi: s.n., 2005.
Encontre o texto completo da fonteLibrary of Congress. Cataloging Policy and Support Office. Classification. Washington: Library of Congress, 1993.
Encontre o texto completo da fonteLibrary of Congress. Office for Subject Cataloging Policy. Classification. 5a ed. Washington, DC: Library of Congress, 1992.
Encontre o texto completo da fonteHaroon, Mohammed. Music classification: Schedule for colon classification. New Delhi: Kanishka Publishers, Distributors, 2010.
Encontre o texto completo da fonteHaroon, Mohammed. Music classification: Schedule for colon classification. New Delhi: Kanishka Publishers, Distributors, 2010.
Encontre o texto completo da fonteJames, Mike. Classification algorithms. New York: Wiley, 1985.
Encontre o texto completo da fonteBandyopadhyay, Sanghamitra, e Sriparna Saha. Unsupervised Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32451-2.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. Multilabel Classification. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8.
Texto completo da fonteCapítulos de livros sobre o assunto "Classification"
Herrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Multilabel Classification". In Multilabel Classification, 17–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_2.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Introduction". In Multilabel Classification, 1–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_1.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Case Studies and Metrics". In Multilabel Classification, 33–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_3.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Transformation-Based Classifiers". In Multilabel Classification, 65–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_4.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Adaptation-Based Classifiers". In Multilabel Classification, 81–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_5.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Ensemble-Based Classifiers". In Multilabel Classification, 101–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_6.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Dimensionality Reduction". In Multilabel Classification, 115–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_7.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Imbalance in Multilabel Datasets". In Multilabel Classification, 133–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_8.
Texto completo da fonteHerrera, Francisco, Francisco Charte, Antonio J. Rivera e María J. del Jesus. "Multilabel Software". In Multilabel Classification, 153–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_9.
Texto completo da fonteAbe, Shigeo. "Introduction". In Pattern Classification, 3–20. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Classification"
Besse, P., P. Boisson e J. McGregor. "What Classification Rules For The Future And What Future For Classification?" In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.15.
Texto completo da fonteBień, Jan, e Małgorzata Gładysz-Bień. "Multi-level Classification of Bridge Defects in Asset Management". In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1100.
Texto completo da fonteFadaie, Gholamreza. "The Influence of Classification on World View and Epistemology". In InSITE 2008: Informing Science + IT Education Conference. Informing Science Institute, 2008. http://dx.doi.org/10.28945/3279.
Texto completo da fonteKhan, Mysha, e Pushpa Bhat. "Higgs event classification using Machine Learning". In Higgs event classification using Machine Learning. US DOE, 2023. http://dx.doi.org/10.2172/1997111.
Texto completo da fonteBozhchenko, Alexandr, e Sergey Semenov. "On the classification of damaging factors in forensic medicine". In Issues of determining the severity of harm caused to human health as a result of the impact of a biological factor. ru: Publishing Center RIOR, 2020. http://dx.doi.org/10.29039/conferencearticle_5fdcb03a403b58.93332884.
Texto completo da fonteBruhns, H. "The New Imo Regulation For The Protection Of Fuel Tanks Affects Ship Designs". In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.12.
Texto completo da fonteMotok, M. D., e J. Jovovic. "Wave Induced Shear Force And Bending Moment For Series Of Ships - Comparison & Some Interpolation Procedures". In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.14.
Texto completo da fonteJankowski, J., e M. Bogdaniuk. "Risk Model Used To Develop Goal-Based Standards For Ship Structures Of Single Side Bulk Carrier". In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.09.
Texto completo da fonteRizzo, C. M., e E. Rizzuto. "A Comparison Of Common Structural Rules With Previous Class Rules". In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.01.
Texto completo da fonteCazzulo, R., e A. Alderson. "Performance Standards Of Coatings In Ballast Tanks - Where A Class Society Could Help". In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.06.
Texto completo da fonteRelatórios de organizações sobre o assunto "Classification"
Robinson, David Gerald. Tissue Classification. Office of Scientific and Technical Information (OSTI), janeiro de 2015. http://dx.doi.org/10.2172/1177377.
Texto completo da fonteSHpinev, YU S. Investment classification. Институт государства и права РАН, 2020. http://dx.doi.org/10.18411/1311-1972-2020-00011.
Texto completo da fonteLi, C., O. Havel, A. Olariu, P. Martinez-Julia, J. Nobre e D. Lopez. Intent Classification. RFC Editor, outubro de 2022. http://dx.doi.org/10.17487/rfc9316.
Texto completo da fonteHersey, Anne, ed. ChEMBL Assay Classification. EMBL-EBI, junho de 2018. http://dx.doi.org/10.6019/chembl.assayclassification.
Texto completo da fonteSchau, M. Classification of granulites. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128123.
Texto completo da fonteBrereton, S. J. Hazard classification methodology. Office of Scientific and Technical Information (OSTI), julho de 1996. http://dx.doi.org/10.2172/273808.
Texto completo da fonteDEPARTMENT OF THE ARMY WASHINGTON DC. Classification Management Tutorial. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2006. http://dx.doi.org/10.21236/ada458946.
Texto completo da fonteBogdanovic, D., B. Claise e C. Moberg. YANG Module Classification. RFC Editor, julho de 2017. http://dx.doi.org/10.17487/rfc8199.
Texto completo da fonteMarrs, Frank. Multiclass classification experiments. Office of Scientific and Technical Information (OSTI), setembro de 2020. http://dx.doi.org/10.2172/1669069.
Texto completo da fonteAiken, Catherine. Classifying AI Systems. Center for Security and Emerging Technology, novembro de 2021. http://dx.doi.org/10.51593/20200025.
Texto completo da fonte