Artigos de revistas sobre o tema "Citrus fruits Physiology"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Citrus fruits Physiology".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Lu, Suwen, Junli Ye, Kaijie Zhu, Yin Zhang, Mengwei Zhang, Qiang Xu e Xiuxin Deng. "A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus". Journal of Experimental Botany 72, n.º 8 (5 de fevereiro de 2021): 3028–43. http://dx.doi.org/10.1093/jxb/erab045.
Texto completo da fonteSaini, Ramesh Kumar, Arina Ranjit, Kavita Sharma, Parchuri Prasad, Xiaomin Shang, Karekal Girinur Mallikarjuna Gowda e Young-Soo Keum. "Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes". Antioxidants 11, n.º 2 (26 de janeiro de 2022): 239. http://dx.doi.org/10.3390/antiox11020239.
Texto completo da fonteSetyadjit e D. A. Setyabudi. "Postharvest Physiology and Technology of Tropical Fruits (Indonesia)". IOP Conference Series: Earth and Environmental Science 1024, n.º 1 (1 de maio de 2022): 012052. http://dx.doi.org/10.1088/1755-1315/1024/1/012052.
Texto completo da fonteCostanzo, Giulia, Ermenegilda Vitale, Maria Rosaria Iesce, Daniele Naviglio, Angela Amoresano, Carolina Fontanarosa, Michele Spinelli, Martina Ciaravolo e Carmen Arena. "Antioxidant Properties of Pulp, Peel and Seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at Different Stages of Fruit Ripening". Antioxidants 11, n.º 2 (19 de janeiro de 2022): 187. http://dx.doi.org/10.3390/antiox11020187.
Texto completo da fonteHussain, Syed Bilal, Cai-Yun Shi, Ling-Xia Guo, Wei Du, Ying-Xing Bai, Hafiz Muhammad Kamran, Alisdair R. Fernie e Yong-Zhong Liu. "Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit". Journal of Experimental Botany 71, n.º 19 (26 de junho de 2020): 5935–47. http://dx.doi.org/10.1093/jxb/eraa298.
Texto completo da fonteCONSTANTINIDOU, H. A., e O. MENKISSOGLU. "Characteristics and Importance of Heterogeneous ice Nuclei Associated With Citrus Fruits". Journal of Experimental Botany 43, n.º 4 (1992): 585–91. http://dx.doi.org/10.1093/jxb/43.4.585.
Texto completo da fonteZhu, Kaijie, Quan Sun, Hongyan Chen, Xuehan Mei, Suwen Lu, Junli Ye, Lijun Chai, Qiang Xu e Xiuxin Deng. "Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061". Journal of Experimental Botany 72, n.º 8 (5 de fevereiro de 2021): 3137–54. http://dx.doi.org/10.1093/jxb/erab047.
Texto completo da fonteAlva, A. K., S. Paramasivam, K. H. Hostler, G. W. Easterwood e J. E. Southwell. "EFFECTS OF NITROGEN RATES ON DRY MATTER AND NITROGEN ACCUMULATION IN CITRUS FRUITS AND FRUIT YIELD". Journal of Plant Nutrition 24, n.º 3 (28 de fevereiro de 2001): 561–72. http://dx.doi.org/10.1081/pln-100104980.
Texto completo da fonteSRILAONG, Varit, e Yasuo TATSUMI. "Effects of various oxygen atmospheres on physiology and quality in Cavendish banana and 'Hebezu' citrus fruits". food preservation science 28, n.º 6 (2002): 307–15. http://dx.doi.org/10.5891/jafps.28.307.
Texto completo da fonteAlas, T., A. Akın e İ. Kahramanoğlu. "Symptomological identification of Citrus Psorosis Virus (CPsV) in citrus orchards of Northern Cyprus". Proceedings on applied botany, genetics and breeding 183, n.º 2 (24 de junho de 2022): 149–58. http://dx.doi.org/10.30901/2227-8834-2022-2-149-158.
Texto completo da fonteCarullo, Gabriele, Anna Ramunno, Eduardo Maria Sommella, Michele De Luca, Emilia Lucia Belsito, Luca Frattaruolo, Matteo Brindisi, Pietro Campiglia, Anna Rita Cappello e Francesca Aiello. "Ultrasound-Assisted Extraction, Chemical Characterization, and Impact on Cell Viability of Food Wastes Derived from Southern Italy Autochthonous Citrus Fruits". Antioxidants 11, n.º 2 (30 de janeiro de 2022): 285. http://dx.doi.org/10.3390/antiox11020285.
Texto completo da fonteLiang, Shejian, Haiyang Wang, Ming Yang e Hong Wu. "Sequential actions of pectinases and cellulases during secretory cavity formation in Citrus fruits". Trees 23, n.º 1 (25 de julho de 2008): 19–27. http://dx.doi.org/10.1007/s00468-008-0250-7.
Texto completo da fontePan, Tengfei, Muhammad Moaaz Ali, Jiangmei Gong, Wenqin She, Dongming Pan, Zhixiong Guo, Yuan Yu e Faxing Chen. "Fruit Physiology and Sugar-Acid Profile of 24 Pomelo (Citrus grandis (L.) Osbeck) Cultivars Grown in Subtropical Region of China". Agronomy 11, n.º 12 (24 de novembro de 2021): 2393. http://dx.doi.org/10.3390/agronomy11122393.
Texto completo da fonteKaur, Jaswinder, Manish Vyas, Joginder Singh, Ram Prasad e Jeena Gupta. "Therapeutic Applications of Naringenin, a Flavanone Enriched in Citrus Fruits, for Disorders beyond Diabetes". Phyton 89, n.º 4 (2020): 795–803. http://dx.doi.org/10.32604/phyton.2020.09420.
Texto completo da fonteChen, Jiebiao, Yue Wang, Tailin Zhu, Sijia Yang, Jinping Cao, Xian Li, Li-Shu Wang e Chongde Sun. "Beneficial Regulatory Effects of Polymethoxyflavone—Rich Fraction from Ougan (Citrus reticulata cv. Suavissima) Fruit on Gut Microbiota and Identification of Its Intestinal Metabolites in Mice". Antioxidants 9, n.º 9 (6 de setembro de 2020): 831. http://dx.doi.org/10.3390/antiox9090831.
Texto completo da fonteZeng, Yunliu, Zhiyong Pan, Yuduan Ding, Andan Zhu, Hongbo Cao, Qiang Xu e Xiuxin Deng. "A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]". Journal of Experimental Botany 62, n.º 15 (12 de agosto de 2011): 5297–309. http://dx.doi.org/10.1093/jxb/err140.
Texto completo da fonteSerna-Escolano, Vicente, María José Giménez, Salvador Castillo, Juan Miguel Valverde, Domingo Martínez-Romero, Fabián Guillén, María Serrano, Daniel Valero e Pedro Javier Zapata. "Preharvest Treatment with Oxalic Acid Improves Postharvest Storage of Lemon Fruit by Stimulation of the Antioxidant System and Phenolic Content". Antioxidants 10, n.º 6 (15 de junho de 2021): 963. http://dx.doi.org/10.3390/antiox10060963.
Texto completo da fonteZacarías-García, Jaime, Laura Pérez-Través, José-Vicente Gil, María-Jesús Rodrigo e Lorenzo Zacarías. "Bioactive Compounds, Nutritional Quality and Antioxidant Capacity of the Red-Fleshed Kirkwood Navel and Ruby Valencia Oranges". Antioxidants 11, n.º 10 (26 de setembro de 2022): 1905. http://dx.doi.org/10.3390/antiox11101905.
Texto completo da fonteCastillo, J., O. Benavente e J. A. del Rio. "Naringin and Neohesperidin Levels during Development of Leaves, Flower Buds, and Fruits of Citrus aurantium". PLANT PHYSIOLOGY 99, n.º 1 (1 de maio de 1992): 67–73. http://dx.doi.org/10.1104/pp.99.1.67.
Texto completo da fonteBellavite, Paolo, e Alberto Donzelli. "Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits". Antioxidants 9, n.º 8 (13 de agosto de 2020): 742. http://dx.doi.org/10.3390/antiox9080742.
Texto completo da fonteFontana, Gianfranco, Maurizio Bruno, Francesco Sottile e Natale Badalamenti. "The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from Citrus Genus". Antioxidants 12, n.º 1 (22 de dezembro de 2022): 23. http://dx.doi.org/10.3390/antiox12010023.
Texto completo da fontePepe, Giacomo, Emanuela Salviati, Shara Francesca Rapa, Carmine Ostacolo, Stella Cascioferro, Michele Manfra, Giuseppina Autore, Stefania Marzocco e Pietro Campiglia. "Citrus sinensis and Vitis vinifera Protect Cardiomyocytes from Doxorubicin-Induced Oxidative Stress: Evaluation of Onconutraceutical Potential of Vegetable Smoothies". Antioxidants 9, n.º 5 (2 de maio de 2020): 378. http://dx.doi.org/10.3390/antiox9050378.
Texto completo da fonteBallester, Ana-Rosa, Marina Marcet-Houben, Elena Levin, Noa Sela, Cristina Selma-Lázaro, Lourdes Carmona, Michael Wisniewski, Samir Droby, Luis González-Candelas e Toni Gabaldón. "Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity". Molecular Plant-Microbe Interactions® 28, n.º 3 (março de 2015): 232–48. http://dx.doi.org/10.1094/mpmi-09-14-0261-fi.
Texto completo da fonteMa, Qiaoli, Yuduan Ding, Jiwei Chang, Xiaohua Sun, Li Zhang, Qingjiang Wei, Yunjiang Cheng, Lingling Chen, Juan Xu e Xiuxin Deng. "Comprehensive insights on how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches". Journal of Experimental Botany 65, n.º 1 (8 de novembro de 2013): 61–74. http://dx.doi.org/10.1093/jxb/ert344.
Texto completo da fonteJiménez-Padilla, Yanira, Laura V. Ferguson e Brent J. Sinclair. "Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature Drosophila suzukii (Diptera: Drosophilidae)". Canadian Entomologist 152, n.º 4 (22 de junho de 2020): 532–45. http://dx.doi.org/10.4039/tce.2020.36.
Texto completo da fonteCarmona, Lourdes, Maria Sulli, Gianfranco Diretto, Berta Alquézar, Mónica Alves e Leandro Peña. "Improvement of Antioxidant Properties in Fruit from Two Blood and Blond Orange Cultivars by Postharvest Storage at Low Temperature". Antioxidants 11, n.º 3 (14 de março de 2022): 547. http://dx.doi.org/10.3390/antiox11030547.
Texto completo da fonteZheng, P., M. Bai, Y. Chen, P. W. Liu, L. Gao, S. J. Liang e H. Wu. "Programmed cell death of secretory cavity cells of citrus fruits is associated with Ca2+ accumulation in the nucleus". Trees 28, n.º 4 (22 de maio de 2014): 1137–44. http://dx.doi.org/10.1007/s00468-014-1024-z.
Texto completo da fonteBhargava, Poorva, Jagriti Bhatia e Ds Arya. "INVESTIGATION OF BIOACTIVE FLAVONOID SOURCED FROM CITRUS FRUITS ON ITS EFFECT UPON CARDIAC HYPERTROPHY: AN EXPERIMENTAL STUDY". Journal of Hypertension 39, Supplement 1 (abril de 2021): e280. http://dx.doi.org/10.1097/01.hjh.0000747672.39225.20.
Texto completo da fonteTaqarort, Naima, Abdelouahed Echairi, Remi Chaussod, Rachida Nouaim, Hassan Boubaker, Abdellah A. Benaoumar e Elhassan Boudyach. "Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits". World Journal of Microbiology and Biotechnology 24, n.º 12 (11 de setembro de 2008): 3031–38. http://dx.doi.org/10.1007/s11274-008-9849-5.
Texto completo da fonteChoi, Moon-Hee, Seung-Hwa Yang, Nam Doo Kim e Hyun-Jae Shin. "Nomilin from Yuzu Seed Has In Vitro Antioxidant Activity and Downregulates Melanogenesis in B16F10 Melanoma Cells through the PKA/CREB Signaling Pathway". Antioxidants 11, n.º 9 (23 de agosto de 2022): 1636. http://dx.doi.org/10.3390/antiox11091636.
Texto completo da fonteHuai, B., M. Bai, P. P. Tong, H. J. He, M. J. Liang, C. Y. Chen e H. Wu. "CgPBA1 may be involved in nuclear degradation during secretory cavity formation by programmed cell death in Citrus grandis ‘Tomentosa’ fruits". Plant Physiology and Biochemistry 160 (março de 2021): 306–14. http://dx.doi.org/10.1016/j.plaphy.2021.01.018.
Texto completo da fonteBarkai-Golan, Rivka, e Rachel Karadavid. "Cellulolytic Actitivity of Penicillium digitatum and P. italicum Related to Fungal Growth and to Pathogenesis in Citrus Fruits". Journal of Phytopathology 131, n.º 1 (janeiro de 1991): 65–72. http://dx.doi.org/10.1111/j.1439-0434.1991.tb04572.x.
Texto completo da fonteMarcos, Jose F., Luis González-Candelas e Lorenzo Zacarías. "Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs". Journal of Experimental Botany 56, n.º 418 (27 de junho de 2005): 2183–93. http://dx.doi.org/10.1093/jxb/eri218.
Texto completo da fonteShivalik, Yatin, e Amit Goyal. "Treatment of Domestic Waste Water Using Organic Bio-Enzymes Extracted from Seasonal Citrus Fruits". International Journal for Research in Applied Science and Engineering Technology 10, n.º 8 (31 de agosto de 2022): 1023–26. http://dx.doi.org/10.22214/ijraset.2022.46327.
Texto completo da fonteLópez-García, Belén, Luis González-Candelas, Enrique Pérez-Payá e Jose F. Marcos. "Identification and Characterization of a Hexapeptide with Activity Against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits". Molecular Plant-Microbe Interactions® 13, n.º 8 (agosto de 2000): 837–46. http://dx.doi.org/10.1094/mpmi.2000.13.8.837.
Texto completo da fonteNie, Zhengpeng, Chunpeng Wan, Chuying Chen e Jinyin Chen. "Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA". Antioxidants 8, n.º 5 (17 de maio de 2019): 136. http://dx.doi.org/10.3390/antiox8050136.
Texto completo da fonteWang, Dawei, Wenpu Ma, Fu Wang, Jinlei Dong, Dan Wang, Bo Sun e Bomin Wang. "Stimulation of Wnt/β-Catenin Signaling to Improve Bone Development by Naringin via Interacting with AMPK and Akt". Cellular Physiology and Biochemistry 36, n.º 4 (2015): 1563–76. http://dx.doi.org/10.1159/000430319.
Texto completo da fonteKhan, Amjad, Muhammad Ikram, Jong Ryeal Hahm e Myeong Ok Kim. "Antioxidant and Anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders". Antioxidants 9, n.º 7 (10 de julho de 2020): 609. http://dx.doi.org/10.3390/antiox9070609.
Texto completo da fonteCioni, Emily, Chiara Migone, Roberta Ascrizzi, Beatrice Muscatello, Marinella De Leo, Anna Maria Piras, Ylenia Zambito, Guido Flamini e Luisa Pistelli. "Comparing Metabolomic and Essential Oil Fingerprints of Citrus australasica F. Muell (Finger Lime) Varieties and Their In Vitro Antioxidant Activity". Antioxidants 11, n.º 10 (18 de outubro de 2022): 2047. http://dx.doi.org/10.3390/antiox11102047.
Texto completo da fonteHeo, Seong, e Won-Pyo Park. "Effects of Nitrogen Deficiency and Resupply on the Absorption of Mineral Nutrients by Tangor Cultivar ‘Shiranuhi’ (Citrus unshiu × C. sinensis) Grown in a Hydroponic System". Plants 11, n.º 18 (8 de setembro de 2022): 2351. http://dx.doi.org/10.3390/plants11182351.
Texto completo da fonteFideles, Simone Ortiz Moura, Adriana de Cássia Ortiz, Daniela Vieira Buchaim, Eliana de Souza Bastos Mazuqueli Pereira, Maria Júlia Bento Martins Parreira, Jéssica de Oliveira Rossi, Marcelo Rodrigues da Cunha, Alexandre Teixeira de Souza, Wendel Cleber Soares e Rogerio Leone Buchaim. "Influence of the Neuroprotective Properties of Quercetin on Regeneration and Functional Recovery of the Nervous System". Antioxidants 12, n.º 1 (7 de janeiro de 2023): 149. http://dx.doi.org/10.3390/antiox12010149.
Texto completo da fonteLourkisti, Radia, Yann Froelicher, Raphaël Morillon, Liliane Berti e Jérémie Santini. "Enhanced Photosynthetic Capacity, Osmotic Adjustment and Antioxidant Defenses Contribute to Improve Tolerance to Moderate Water Deficit and Recovery of Triploid Citrus Genotypes". Antioxidants 11, n.º 3 (16 de março de 2022): 562. http://dx.doi.org/10.3390/antiox11030562.
Texto completo da fonteLeporini, Mariarosaria, Monica Rosa Loizzo, Vincenzo Sicari, Teresa Maria Pellicanò, Antonella Reitano, Annabelle Dugay, Brigitte Deguin e Rosa Tundis. "Citrus × Clementina Hort. Juice Enriched with Its By-Products (Peels and Leaves): Chemical Composition, In Vitro Bioactivity, and Impact of Processing". Antioxidants 9, n.º 4 (3 de abril de 2020): 298. http://dx.doi.org/10.3390/antiox9040298.
Texto completo da fonteIglesias, Domingo J., Manuel Cercós, José M. Colmenero-Flores, Miguel A. Naranjo, Gabino Ríos, Esther Carrera, Omar Ruiz-Rivero et al. "Physiology of citrus fruiting". Brazilian Journal of Plant Physiology 19, n.º 4 (dezembro de 2007): 333–62. http://dx.doi.org/10.1590/s1677-04202007000400006.
Texto completo da fonteRojas-Lema, Sandra, Sergio Torres-Giner, Luis Quiles-Carrillo, Jaume Gomez-Caturla, Daniel Garcia-Garcia e Rafael Balart. "On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films". Antioxidants 10, n.º 1 (25 de dezembro de 2020): 14. http://dx.doi.org/10.3390/antiox10010014.
Texto completo da fonteLee, Jonghwa, Kyeonga Kim, Jemin Son, Hyeseon Lee, Jin Han Song, Taek Lee, Heungbae Jeon et al. "Improved Productivity of Naringin Oleate with Flavonoid and Fatty Acid by Efficient Enzymatic Esterification". Antioxidants 11, n.º 2 (27 de janeiro de 2022): 242. http://dx.doi.org/10.3390/antiox11020242.
Texto completo da fonteDavid, Iulia Gabriela, Simona Carmen Litescu, Raluca Moraru, Camelia Albu, Mihaela Buleandra, Dana Elena Popa, Sorin Riga, Adela Magdalena Ciobanu e Hassan Noor. "Electroanalysis of Naringin at Electroactivated Pencil Graphite Electrode for the Assessment of Polyphenolics with Intermediate Antioxidant Power". Antioxidants 11, n.º 12 (22 de novembro de 2022): 2306. http://dx.doi.org/10.3390/antiox11122306.
Texto completo da fonteBussmann, Allan J. C., Tiago H. Zaninelli, Telma Saraiva-Santos, Victor Fattori, Carla F. S. Guazelli, Mariana M. Bertozzi, Ketlem C. Andrade et al. "The Flavonoid Hesperidin Methyl Chalcone Targets Cytokines and Oxidative Stress to Reduce Diclofenac-Induced Acute Renal Injury: Contribution of the Nrf2 Redox-Sensitive Pathway". Antioxidants 11, n.º 7 (27 de junho de 2022): 1261. http://dx.doi.org/10.3390/antiox11071261.
Texto completo da fonteJeong, Seon Ae, Changwon Yang, Jisoo Song, Gwonhwa Song, Wooyoung Jeong e Whasun Lim. "Hesperidin Suppresses the Proliferation of Prostate Cancer Cells by Inducing Oxidative Stress and Disrupting Ca2+ Homeostasis". Antioxidants 11, n.º 9 (23 de agosto de 2022): 1633. http://dx.doi.org/10.3390/antiox11091633.
Texto completo da fonteGomes, Francielly R., Cláudia D. M. Rodrigues, Angelita L. S. L. Ragagnin, Bruna S. Gomes, Gabriel S. Costa, Isabelly da S. Gonçalves, João P. S. M. Guimarães et al. "Genetic Diversity and Characterization of Sweet Lemon (Citrus limetta) Fruits". Journal of Agricultural Science 12, n.º 8 (15 de julho de 2020): 181. http://dx.doi.org/10.5539/jas.v12n8p181.
Texto completo da fonte