Artigos de revistas sobre o tema "Cilia and ciliary motion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cilia and ciliary motion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dong, Xiaoguang, Guo Zhan Lum, Wenqi Hu, Rongjing Zhang, Ziyu Ren, Patrick R. Onck e Metin Sitti. "Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination". Science Advances 6, n.º 45 (novembro de 2020): eabc9323. http://dx.doi.org/10.1126/sciadv.abc9323.
Texto completo da fonteSears, Patrick R., Kristin Thompson, Michael R. Knowles e C. William Davis. "Human airway ciliary dynamics". American Journal of Physiology-Lung Cellular and Molecular Physiology 304, n.º 3 (1 de fevereiro de 2013): L170—L183. http://dx.doi.org/10.1152/ajplung.00105.2012.
Texto completo da fonteValentine, Megan, e Judith Van Houten. "Using Paramecium as a Model for Ciliopathies". Genes 12, n.º 10 (24 de setembro de 2021): 1493. http://dx.doi.org/10.3390/genes12101493.
Texto completo da fonteVanaki, Shayan M., David Holmes, Pahala Gedara Jayathilake e Richard Brown. "Three-Dimensional Numerical Analysis of Periciliary Liquid Layer: Ciliary Abnormalities in Respiratory Diseases". Applied Sciences 9, n.º 19 (26 de setembro de 2019): 4033. http://dx.doi.org/10.3390/app9194033.
Texto completo da fonteSher Akbar, Noreen, e Z. H. Khan. "Heat transfer analysis of bi-viscous ciliary motion fluid". International Journal of Biomathematics 08, n.º 02 (25 de fevereiro de 2015): 1550026. http://dx.doi.org/10.1142/s1793524515500266.
Texto completo da fonteYu, Yanan, Kyosuke Shinohara, Huanming Xu, Zhenfeng Li, Tomoki Nishida, Hiroshi Hamada, Yuanqing Xu et al. "The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization". Cellular Physiology and Biochemistry 51, n.º 6 (2018): 2843–57. http://dx.doi.org/10.1159/000496038.
Texto completo da fonteFlaherty, Justin, Zhe Feng, Zhangli Peng, Y. N. Young e Andrew Resnick. "Primary cilia have a length-dependent persistence length". Biomechanics and Modeling in Mechanobiology 19, n.º 2 (9 de setembro de 2019): 445–60. http://dx.doi.org/10.1007/s10237-019-01220-7.
Texto completo da fonteSareh, Sina, Jonathan Rossiter, Andrew Conn, Knut Drescher e Raymond E. Goldstein. "Swimming like algae: biomimetic soft artificial cilia". Journal of The Royal Society Interface 10, n.º 78 (6 de janeiro de 2013): 20120666. http://dx.doi.org/10.1098/rsif.2012.0666.
Texto completo da fontePeabody, Jacelyn E., Ren-Jay Shei, Brent M. Bermingham, Scott E. Phillips, Brett Turner, Steven M. Rowe e George M. Solomon. "Seeing cilia: imaging modalities for ciliary motion and clinical connections". American Journal of Physiology-Lung Cellular and Molecular Physiology 314, n.º 6 (1 de junho de 2018): L909—L921. http://dx.doi.org/10.1152/ajplung.00556.2017.
Texto completo da fonteIto, Hiroaki, Toshihiro Omori e Takuji Ishikawa. "Swimming mediated by ciliary beating: comparison with a squirmer model". Journal of Fluid Mechanics 874 (12 de julho de 2019): 774–96. http://dx.doi.org/10.1017/jfm.2019.490.
Texto completo da fonteKupferberg, Stephen B., John P. Bent e Edward S. Porubsky. "The Evaluation of Ciliary Function: Electron versus Light Microscopy". American Journal of Rhinology 12, n.º 3 (maio de 1998): 199–202. http://dx.doi.org/10.2500/105065898781390172.
Texto completo da fonteHoque, Mohammed, Eunice N. Kim, Danny Chen, Feng-Qian Li e Ken-Ichi Takemaru. "Essential Roles of Efferent Duct Multicilia in Male Fertility". Cells 11, n.º 3 (20 de janeiro de 2022): 341. http://dx.doi.org/10.3390/cells11030341.
Texto completo da fonteHan, Jihun, e Charles S. Peskin. "Spontaneous oscillation and fluid–structure interaction of cilia". Proceedings of the National Academy of Sciences 115, n.º 17 (9 de abril de 2018): 4417–22. http://dx.doi.org/10.1073/pnas.1712042115.
Texto completo da fonteOhmura, Takuya, Yukinori Nishigami, Atsushi Taniguchi, Shigenori Nonaka, Junichi Manabe, Takuji Ishikawa e Masatoshi Ichikawa. "Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates". Proceedings of the National Academy of Sciences 115, n.º 13 (12 de março de 2018): 3231–36. http://dx.doi.org/10.1073/pnas.1718294115.
Texto completo da fonteKhaderi, S. N., J. M. J. den Toonder e P. R. Onck. "Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis". Journal of Fluid Mechanics 688 (20 de outubro de 2011): 44–65. http://dx.doi.org/10.1017/jfm.2011.355.
Texto completo da fonteShakib Arslan, Muhammad, Zaheer Abbas e Muhammad Yousuf Rafiq. "Biological flow of thermally intense cilia generated motion of non-Newtonian fluid in a curved channel". Advances in Mechanical Engineering 15, n.º 3 (março de 2023): 168781322311571. http://dx.doi.org/10.1177/16878132231157179.
Texto completo da fontePaff, Tamara, Heymut Omran, Kim G. Nielsen e Eric G. Haarman. "Current and Future Treatments in Primary Ciliary Dyskinesia". International Journal of Molecular Sciences 22, n.º 18 (11 de setembro de 2021): 9834. http://dx.doi.org/10.3390/ijms22189834.
Texto completo da fonteYang, T. Tony, Minh Nguyet Thi Tran, Weng Man Chong, Chia-En Huang e Jung-Chi Liao. "Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia". Molecular Biology of the Cell 30, n.º 7 (21 de março de 2019): 828–37. http://dx.doi.org/10.1091/mbc.e18-10-0654.
Texto completo da fontePatel-King, Ramila S., Miho Sakato-Antoku, Maya Yankova e Stephen M. King. "WDR92 is required for axonemal dynein heavy chain stability in cytoplasm". Molecular Biology of the Cell 30, n.º 15 (15 de julho de 2019): 1834–45. http://dx.doi.org/10.1091/mbc.e19-03-0139.
Texto completo da fonteGueron, Shay, e Konstantin Levit-Gurevich. "Computation of the Internal Forces in Cilia: Application to Ciliary Motion, the Effects of Viscosity, and Cilia Interactions". Biophysical Journal 74, n.º 4 (abril de 1998): 1658–76. http://dx.doi.org/10.1016/s0006-3495(98)77879-8.
Texto completo da fonteFarooq, A. A., e A. M. Siddiqui. "Mathematical model for the ciliary-induced transport of seminal liquids through the ductuli efferentes". International Journal of Biomathematics 10, n.º 03 (20 de fevereiro de 2017): 1750031. http://dx.doi.org/10.1142/s1793524517500310.
Texto completo da fonteKiyota, Kouki, Hironori Ueno, Keiko Numayama-Tsuruta, Tomofumi Haga, Yohsuke Imai, Takami Yamaguchi e Takuji Ishikawa. "Fluctuation of cilia-generated flow on the surface of the tracheal lumen". American Journal of Physiology-Lung Cellular and Molecular Physiology 306, n.º 2 (15 de janeiro de 2014): L144—L151. http://dx.doi.org/10.1152/ajplung.00117.2013.
Texto completo da fonteSalman, Huseyin Enes, Nathalie Jurisch-Yaksi e Huseyin Cagatay Yalcin. "Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo". Bioengineering 9, n.º 9 (28 de agosto de 2022): 421. http://dx.doi.org/10.3390/bioengineering9090421.
Texto completo da fonteAkbar, Noreen Sher, e Adil Wahid Butt. "Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia". International Journal of Biomathematics 07, n.º 06 (novembro de 2014): 1450066. http://dx.doi.org/10.1142/s1793524514500661.
Texto completo da fonteSher Akbar, Noreen. "Biomathematical analysis of carbon nanotubes due to ciliary motion". International Journal of Biomathematics 08, n.º 02 (25 de fevereiro de 2015): 1550023. http://dx.doi.org/10.1142/s1793524515500230.
Texto completo da fonteCui, Zhiwei, Ye Wang e Jaap M. J. den Toonder. "Metachronal Motion of Biological and Artificial Cilia". Biomimetics 9, n.º 4 (27 de março de 2024): 198. http://dx.doi.org/10.3390/biomimetics9040198.
Texto completo da fontePang, Chuan, Fengwei An, Shiming Yang, Ning Yu, Daishi Chen e Lei Chen. "In vivo and in vitro observation of nasal ciliary motion in a guinea pig model". Experimental Biology and Medicine 245, n.º 12 (20 de maio de 2020): 1039–48. http://dx.doi.org/10.1177/1535370220926443.
Texto completo da fonteRamachandran, Saravana, Kuppalapalle Vajravelu, K. V. Prasad e S. Sreenadh. "Peristaltic-Ciliary Flow of A Casson Fluid through An Inclined Tube". Communication in Biomathematical Sciences 4, n.º 1 (7 de maio de 2021): 23–38. http://dx.doi.org/10.5614/cbms.2021.4.1.3.
Texto completo da fonteMorgan, Darrell D., e Anthony G. Moss. "The Effects of Cigarette Smoke on Porcine Airway Epithelium". Microscopy and Microanalysis 4, S2 (julho de 1998): 1076–77. http://dx.doi.org/10.1017/s1431927600025502.
Texto completo da fonteWyatt, Todd A., Mary A. Forgèt, Jennifer M. Adams e Joseph H. Sisson. "Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes". American Journal of Physiology-Lung Cellular and Molecular Physiology 288, n.º 3 (março de 2005): L546—L551. http://dx.doi.org/10.1152/ajplung.00107.2004.
Texto completo da fonteFerguson, Jonathan L., Thomas V. McCaffrey, Eugene B. Kern e William J. Martin. "The Effects of Sinus Bacteria on Human Ciliated Nasal Epithelium in Vitro". Otolaryngology–Head and Neck Surgery 98, n.º 4 (abril de 1988): 299–304. http://dx.doi.org/10.1177/019459988809800405.
Texto completo da fonteWU, Junlin, Jiaqi Yin, Zixiang Xu, Yingli Liu, Huanyong Qin e Xin Sheng. "The function of ciliopathy protein FOP on cilia and cortical microtubule cytoskeleton in Euplotes amieti". Acta Protozoologica 62 (2023): 45–56. http://dx.doi.org/10.4467/16890027ap.23.005.18868.
Texto completo da fonteStokes, M. "Larval locomotion of the lancelet". Journal of Experimental Biology 200, n.º 11 (1 de janeiro de 1997): 1661–80. http://dx.doi.org/10.1242/jeb.200.11.1661.
Texto completo da fonteUENO, Hironori, Takuji ISHIKAWA, Khanh Huy BUI, Kohsuke GONDA, Takashi ISHIKAWA e Takami YAMAGUCHI. "7G13 Analysis of ciliary motion and the axonemal structure in the mouse respiratory cilia". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2012.24 (2012): _7G13–1_—_7G13–2_. http://dx.doi.org/10.1299/jsmebio.2012.24._7g13-1_.
Texto completo da fonteRoth, K. E., C. L. Rieder e S. S. Bowser. "Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9+0) cilia in cultured kidney epithelia". Journal of Cell Science 89, n.º 4 (1 de abril de 1988): 457–66. http://dx.doi.org/10.1242/jcs.89.4.457.
Texto completo da fonteSmith, D. J., E. A. Gaffney e J. R. Blake. "Mathematical modelling of cilia-driven transport of biological fluids". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, n.º 2108 (2 de junho de 2009): 2417–39. http://dx.doi.org/10.1098/rspa.2009.0018.
Texto completo da fonteSiddiqui, A. M., A. A. Farooq e M. A. Rana. "An investigation of non-Newtonian fluid flow due to metachronal beating of cilia in a tube". International Journal of Biomathematics 08, n.º 02 (25 de fevereiro de 2015): 1550016. http://dx.doi.org/10.1142/s1793524515500163.
Texto completo da fonteUmlauf, Benjamin. "DDEL-13. CILIA INHIBITORS SYNERGIZE WITH TEMOZOLOMIDE TO DRAMATICALLY IMPROVE SURVIVAL IN ORTHOTOPIC MURINE MODELS OF GLIOBLASTOMA". Neuro-Oncology 25, Supplement_5 (1 de novembro de 2023): v104. http://dx.doi.org/10.1093/neuonc/noad179.0392.
Texto completo da fonteSatir, P. "Mechanism of Ciliary Movement - What's New?" Physiology 4, n.º 4 (1 de agosto de 1989): 153–57. http://dx.doi.org/10.1152/physiologyonline.1989.4.4.153.
Texto completo da fonteBlanchon, Sylvain, Marie Legendre, Mathieu Bottier, Aline Tamalet, Guy Montantin, Nathalie Collot, Catherine Faucon et al. "Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia". Journal of Medical Genetics 57, n.º 4 (26 de novembro de 2019): 237–44. http://dx.doi.org/10.1136/jmedgenet-2019-106424.
Texto completo da fonteSisson, J. H., D. J. Tuma e S. I. Rennard. "Acetaldehyde-mediated cilia dysfunction in bovine bronchial epithelial cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 260, n.º 2 (1 de fevereiro de 1991): L29—L36. http://dx.doi.org/10.1152/ajplung.1991.260.2.l29.
Texto completo da fonteMasuda, Tsukuru, Aya Mizutani Akimoto, Kenichi Nagase, Teruo Okano e Ryo Yoshida. "Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion". Science Advances 2, n.º 8 (agosto de 2016): e1600902. http://dx.doi.org/10.1126/sciadv.1600902.
Texto completo da fonteRiaz, Arshad, Elena Bobescu, Katta Ramesh e Rahmat Ellahi. "Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus". Symmetry 13, n.º 12 (8 de dezembro de 2021): 2358. http://dx.doi.org/10.3390/sym13122358.
Texto completo da fonteKANEKO, Toshiyasu, Kazuki WATANABE, Kenji NAGAOKA e Kazuya YOSHIDA. "Motion Analysis of Ciliary Micro-Hopping Locomotion for an Asteroid Exploration Robot with Design Parameters of Cilia". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2A2–17a1. http://dx.doi.org/10.1299/jsmermd.2016.2a2-17a1.
Texto completo da fonteHanasoge, Srinivas, Peter J. Hesketh e Alexander Alexeev. "Metachronal motion of artificial magnetic cilia". Soft Matter 14, n.º 19 (2018): 3689–93. http://dx.doi.org/10.1039/c8sm00549d.
Texto completo da fonteIde, Takahiro, Wang Kyaw Twan, Hao Lu, Yayoi Ikawa, Lin-Xenia Lim, Nicole Henninger, Hiromi Nishimura et al. "CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components". PLOS Genetics 16, n.º 12 (21 de dezembro de 2020): e1009232. http://dx.doi.org/10.1371/journal.pgen.1009232.
Texto completo da fonteMAXEY, MARTIN R. "Biomimetics and cilia propulsion". Journal of Fluid Mechanics 678 (17 de junho de 2011): 1–4. http://dx.doi.org/10.1017/jfm.2011.145.
Texto completo da fonteMan, Yi, Feng Ling e Eva Kanso. "Cilia oscillations". Philosophical Transactions of the Royal Society B: Biological Sciences 375, n.º 1792 (30 de dezembro de 2019): 20190157. http://dx.doi.org/10.1098/rstb.2019.0157.
Texto completo da fonteHanasoge, Srinivas, Matthew Ballard, Peter J. Hesketh e Alexander Alexeev. "Asymmetric motion of magnetically actuated artificial cilia". Lab on a Chip 17, n.º 18 (2017): 3138–45. http://dx.doi.org/10.1039/c7lc00556c.
Texto completo da fonteNakamura, S., e S. L. Tamm. "Calcium control of ciliary reversal in ionophore-treated and ATP-reactivated comb plates of ctenophores." Journal of Cell Biology 100, n.º 5 (1 de maio de 1985): 1447–54. http://dx.doi.org/10.1083/jcb.100.5.1447.
Texto completo da fonte