Artigos de revistas sobre o tema "Chromophores Push-Pull"

Siga este link para ver outros tipos de publicações sobre o tema: Chromophores Push-Pull.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Chromophores Push-Pull".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Kato, Shin-ichiro, e François Diederich. "Non-planar push–pull chromophores". Chemical Communications 46, n.º 12 (2010): 1994. http://dx.doi.org/10.1039/b926601a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gupta, Vinod Kumar, e Ram Adhar Singh. "An investigation on single crystal growth, structural, thermal and optical properties of a series of organic D–π–A push–pull materials". RSC Advances 5, n.º 48 (2015): 38591–600. http://dx.doi.org/10.1039/c5ra04907e.

Texto completo da fonte
Resumo:
We present the large single crystal growth of a series of donor–π–acceptor (D–π–A) push–pull chromophores (1–4). The thermal, structural and optical properties of the synthesized chromophores were explored. These studies indicate the potential opto-electronic application of these push–pull chromophores.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Eom, Taejun, e Anzar Khan. "Push-pull azobenzene chromophores with negative halochromism". Dyes and Pigments 188 (abril de 2021): 109197. http://dx.doi.org/10.1016/j.dyepig.2021.109197.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Coluccini, Carmine, Pierangelo Metrangolo, Marco Parachini, Dario Pasini, Giuseppe Resnati e Pierpaolo Righetti. "“Push-pull” supramolecular chromophores supported on cyclopolymers". Journal of Polymer Science Part A: Polymer Chemistry 46, n.º 15 (1 de agosto de 2008): 5202–13. http://dx.doi.org/10.1002/pola.22848.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kato, Shin-ichiro, e Francois Diederich. "ChemInform Abstract: Non-Planar Push-Pull Chromophores". ChemInform 41, n.º 25 (22 de junho de 2010): no. http://dx.doi.org/10.1002/chin.201025206.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Yamada, Michio. "Perspectives on push–pull chromophores derived from click-type [2 + 2] cycloaddition–retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes". Beilstein Journal of Organic Chemistry 20 (22 de janeiro de 2024): 125–54. http://dx.doi.org/10.3762/bjoc.20.13.

Texto completo da fonte
Resumo:
Various push–pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition–retroelectrocyclization (CA–RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push–pull chromophores prepared via the [2 + 2] CA–RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Labrunie, Antoine, Pierre Josse, Sylvie Dabos-Seignon, Philippe Blanchard e Clément Cabanetos. "Pentaerythritol based push–pull tetramers for organic photovoltaics". Sustainable Energy & Fuels 1, n.º 9 (2017): 1921–27. http://dx.doi.org/10.1039/c7se00345e.

Texto completo da fonte
Resumo:
We report herein the synthesis, characterization and preliminary evaluation of two simple tetramers based on the functionalization of a central pentaerythritol σ-linker with push–pull chromophores as molecular donor for organic photovoltaics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lepetit, Christine, Pascal G. Lacroix, Viviane Peyrou, Catherine Saccavini e Remi Chauvin. "Hyperpolarizability of novel carbo-meric push-pull chromophores". Journal of Computational Methods in Sciences and Engineering 4, n.º 4 (22 de dezembro de 2004): 569–88. http://dx.doi.org/10.3233/jcm-2004-4404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Breiten, Benjamin, Ivan Biaggio e François Diederich. "Nonplanar Push–Pull Chromophores for Opto-Electronic Applications". CHIMIA International Journal for Chemistry 64, n.º 6 (30 de junho de 2010): 409–13. http://dx.doi.org/10.2533/chimia.2010.409.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Abbotto, A., L. Beverina, R. Bozio, S. Bradamante, C. Ferrante, G. A. Pagani e R. Signorini. "Push-Pull Organic Chromophores for Frequency-Upconverted Lasing". Advanced Materials 12, n.º 24 (dezembro de 2000): 1963–67. http://dx.doi.org/10.1002/1521-4095(200012)12:24<1963::aid-adma1963>3.0.co;2-s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Abdul Raheem, Abbasriyaludeen, Chitra Kumar, Ramasamy Shanmugam, P. Murugan e Chandrasekar Praveen. "Molecular engineering of twisted dipolar chromophores for efficiency boosted BHJ solar cells". Journal of Materials Chemistry C 9, n.º 13 (2021): 4562–75. http://dx.doi.org/10.1039/d1tc00708d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Lifshits, Liubov M., Darya S. Budkina, Varun Singh, Sergey M. Matveev, Alexander N. Tarnovsky e Jeremy K. Klosterman. "Solution-state photophysics of N-carbazolyl benzoate esters: dual emission and order of states in twisted push–pull chromophores". Physical Chemistry Chemical Physics 18, n.º 39 (2016): 27671–83. http://dx.doi.org/10.1039/c6cp04619c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Zhao, Yu, Chenhao Zhang, Kek Foo Chin, Oldřich Pytela, Guo Wei, Hongjun Liu, Filip Bureš e Zhiyong Jiang. "Dicyanopyrazine-derived push–pull chromophores for highly efficient photoredox catalysis". RSC Adv. 4, n.º 57 (2014): 30062–67. http://dx.doi.org/10.1039/c4ra05525j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Belén Marco, A., Denis Gindre, Konstantinos Iliopoulos, Santiago Franco, Raquel Andreu, David Canevet e Marc Sallé. "(Super)gelators derived from push–pull chromophores: synthesis, gelling properties and second harmonic generation". Organic & Biomolecular Chemistry 16, n.º 14 (2018): 2470–78. http://dx.doi.org/10.1039/c8ob00251g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Li, Chenge, Marie-Aude Plamont, Isabelle Aujard, Thomas Le Saux, Ludovic Jullien e Arnaud Gautier. "Design and characterization of red fluorogenic push–pull chromophores holding great potential for bioimaging and biosensing". Organic & Biomolecular Chemistry 14, n.º 39 (2016): 9253–61. http://dx.doi.org/10.1039/c6ob01612j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Danko, M., P. Hrdlovič, A. Martinická, A. Benda e M. Cigáň. "Spectral properties of ionic benzotristhiazole based donor–acceptor NLO-phores in polymer matrices and their one- and two-photon cellular imaging ability". Photochemical & Photobiological Sciences 16, n.º 12 (2017): 1832–44. http://dx.doi.org/10.1039/c7pp00239d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Kothoori, Naga Pranava Sree, Pandiyan Sivasakthi, Mallesham Baithy, Ramprasad Misra e Pralok K. Samanta. "Rational design and investigation of nonlinear optical response properties of pyrrolopyrrole aza-BODIPY-based novel push–pull chromophores". RSC Advances 14, n.º 22 (2024): 15560–70. http://dx.doi.org/10.1039/d4ra02861a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Zhang, Xuan, Ziqi Wen, Hongxing Zhang, Weihua Han, Jinyi Ma, Renbo Wei e Xiufu Hua. "Dielectric Properties of Azo Polymers: Effect of the Push-Pull Azo Chromophores". International Journal of Polymer Science 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/4541937.

Texto completo da fonte
Resumo:
The relationship between the structure and the dielectric properties of the azo polymers was studied. Four azo polymers were synthesized through the azo-coupling reaction between the same precursor (PAZ) and diazonium salts of 4-aminobenzoic acid ethyl ester, 4-aminobenzonitrile, 4-nitroaniline, and 2-amino-5-nitrothiazole, respectively. The precursor and azo polymers were characterized by 1H NMR, FT-IR, UV-vis, GPC, and DSC. The dielectric constant and dielectric loss of the samples were measured in the frequency range of 100 Hz–200 kHz. Due to the existence of the azo chromophores, the dielectric constant of the azo polymers increases compared with that of the precursor. In addition, the dielectric constant of the azo polymers increases with the increase of the polarity of the azo chromophores. A random copolymer (PAZ-NT-PAZ) composed of the azo polymer PAZ-NT and the precursor PAZ was also prepared to investigate the content of the azo chromophores on the dielectric properties of the azo polymers. It showed that the dielectric constant increases with the increase of the azo chromophores. The results show that the dielectric constant of this kind of azo polymers can be controlled by changing the structures and contents of azo chromophores during the preparation process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kautny, Paul, Florian Glöcklhofer, Thomas Kader, Jan-Michael Mewes, Berthold Stöger, Johannes Fröhlich, Daniel Lumpi e Felix Plasser. "Charge-transfer states in triazole linked donor–acceptor materials: strong effects of chemical modification and solvation". Physical Chemistry Chemical Physics 19, n.º 27 (2017): 18055–67. http://dx.doi.org/10.1039/c7cp01664f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Valdivia-Berroeta, Gabriel A., Karissa C. Kenney, Erika W. Jackson, Joseph C. Bloxham, Adam X. Wayment, Daniel J. Brock, Stacey J. Smith, Jeremy A. Johnson e David J. Michaelis. "6MNEP: a molecular cation with large hyperpolarizability and promise for nonlinear optical applications". Journal of Materials Chemistry C 8, n.º 32 (2020): 11079–87. http://dx.doi.org/10.1039/d0tc01829e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Achelle, Sylvain, Alberto Barsella, Bertrand Caro e Françoise Robin-le Guen. "Donor–linker–acceptor (D–π–A) diazine chromophores with extended π-conjugated cores: synthesis, photophysical and second order nonlinear optical properties". RSC Advances 5, n.º 49 (2015): 39218–27. http://dx.doi.org/10.1039/c5ra05736a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Alain, Valérie, Mireille Blanchard-Desce, Isabelle Ledoux-Rak e Joseph Zyss. "Amphiphilic polyenic push–pull chromophores for nonlinear optical applications". Chemical Communications, n.º 5 (2000): 353–54. http://dx.doi.org/10.1039/a908717f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Iftime, Gabriel, Pascal G. Lacroix, Keitaro Nakatani e Alexandru C. Razus. "Push-pull azulene-based chromophores with nonlinear optical properties". Tetrahedron Letters 39, n.º 38 (setembro de 1998): 6853–56. http://dx.doi.org/10.1016/s0040-4039(98)01495-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Rout, Yogajivan, Vivek Chauhan e Rajneesh Misra. "Synthesis and Characterization of Isoindigo-Based Push–Pull Chromophores". Journal of Organic Chemistry 85, n.º 7 (4 de março de 2020): 4611–18. http://dx.doi.org/10.1021/acs.joc.9b03267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Niu, Songlin, Gilles Ulrich, Pascal Retailleau e Raymond Ziessel. "BODIPY-bridged push–pull chromophores: optical and electrochemical properties". Tetrahedron Letters 52, n.º 38 (setembro de 2011): 4848–53. http://dx.doi.org/10.1016/j.tetlet.2011.07.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Podlesný, Jan, Veronika Jelínková, Oldřich Pytela, Milan Klikar e Filip Bureš. "Acceptor-induced photoisomerization in small thienothiophene push-pull chromophores". Dyes and Pigments 179 (agosto de 2020): 108398. http://dx.doi.org/10.1016/j.dyepig.2020.108398.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Ulrich, Gilles, Alberto Barsella, Alex Boeglin, Songlin Niu e Raymond Ziessel. "BODIPY-Bridged Push-Pull Chromophores for Nonlinear Optical Applications". ChemPhysChem 15, n.º 13 (20 de junho de 2014): 2693–700. http://dx.doi.org/10.1002/cphc.201402123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Klikar, Milan, Parmeshwar Solanke, Jiří Tydlitát e Filip Bureš. "Alphabet-Inspired Design of (Hetero)Aromatic Push-Pull Chromophores". Chemical Record 16, n.º 4 (7 de junho de 2016): 1886–905. http://dx.doi.org/10.1002/tcr.201600032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Zou, Jie, Di Zhang, Weilong Chen e Jingdong Luo. "Optimizing the vectorial component of first hyperpolarizabilities of push–pull chromophores to boost the electro-optic activities of poled polymers over broad telecom wavelength bands". Materials Advances 2, n.º 7 (2021): 2318–27. http://dx.doi.org/10.1039/d1ma00086a.

Texto completo da fonte
Resumo:
Alternating the sequence of thiophene-based π-conjugation bridge of push–pull chromophores significantly improves the vectorial component of first hyperpolarizabilities and polar order of molecules for large electro-optic activities of poled films.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Burganov, T. I., S. A. Katsyuba, S. M. Sharipova, A. A. Kalinin, A. Monari e X. Assfeld. "Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications". Physical Chemistry Chemical Physics 20, n.º 33 (2018): 21515–27. http://dx.doi.org/10.1039/c8cp03780a.

Texto completo da fonte
Resumo:
The photophysical properties of a series of novel push–pull quinoxalinone-based chromophores that strongly absorb and emit light in the broad visible spectrum were comprehensively studied both experimentally and through quantum chemical methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Balaji, N., M. R. Kannan, Y. Sheeba Sherlin e T. Vijayakumar. "Quantum Chemical Computations of an Efficient Push-Pull NLO Chromophore 3-[4-Nitrophenyl Azo]- 9H- Carbazole-9-Ethanol". IOP Conference Series: Materials Science and Engineering 1219, n.º 1 (1 de janeiro de 2022): 012023. http://dx.doi.org/10.1088/1757-899x/1219/1/012023.

Texto completo da fonte
Resumo:
Abstract Electric-optic (EO) materials are being explored for applications ranging from fiber and satellite telecommunications, optical gyroscopes, to photonic detection of radar etc. Dipolar push-pull Organic chromophores that exhibit extended π-conjugation, in particular, show enhanced second order NLO properties. The present investigation reports the quantum chemical computations of the high efficiency push-pull NLO molecule 3-[(4-Nitrophenyl Azo)] - 9H-Carbazole-9-Ethanol (NPACE). The organic push-pull molecule is optimized in gaseous and in various solvent condition using Exchange correlation function (B3LYP/MP2). Molecular electrostatic potential, thermal properties and NBO analysis have also been performed in detail. The effective electron cloud moment in the molecule is mainly governed by the physical process termed intramolecular Charge Transfer (ICT).
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Bureš, Filip, Daniel Cvejn, Klára Melánová, Ludvík Beneš, Jan Svoboda, Vítězslav Zima, Oldřich Pytela et al. "Effect of intercalation and chromophore arrangement on the linear and nonlinear optical properties of model aminopyridine push–pull molecules". Journal of Materials Chemistry C 4, n.º 3 (2016): 468–78. http://dx.doi.org/10.1039/c5tc03499j.

Texto completo da fonte
Resumo:
Three push–pull aminopyridine derivatives having D–π–A, D–(π–A)2, and D–(π–A)3 arrangements were examined as model organic chromophores capable of intercalation into inorganic layered materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Swager, Timothy, e Cagatay Dengiz. "Homoconjugated and Spiro Push–Pull Systems: Cycloadditions of Naphtho- and Anthradiquinones with Electron-Rich Alkynes". Synlett 28, n.º 12 (11 de abril de 2017): 1427–31. http://dx.doi.org/10.1055/s-0036-1588771.

Texto completo da fonte
Resumo:
We report the synthesis and characterization of three new classes of push–pull chromophores using [2+2]-cycloaddition reactions of electron-rich alkynes and electron-poor alkenes. Previous investigations have focused on the reactions of cyano-substituted electron acceptors. This study demonstrates that cyano-free electron acceptors, naphtho- and anthradiquinones, can also be used to access extended push–pull systems. The effects of the structural changes on the spectroscopic and electronic properties were investigated by UV/vis spectroscopy. Structures were confirmed by X-ray and NMR analysis in solution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Podlesný, Jan, Oldřich Pytela, Milan Klikar, Veronika Jelínková, Iwan V. Kityk, Katarzyna Ozga, Jaroslaw Jedryka, Myron Rudysh e Filip Bureš. "Small isomeric push–pull chromophores based on thienothiophenes with tunable optical (non)linearities". Organic & Biomolecular Chemistry 17, n.º 14 (2019): 3623–34. http://dx.doi.org/10.1039/c9ob00487d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Brusatin, Giovanna, Plinio Innocenzi, Alessandro Abbotto, Luca Beverina, Giorgio A. Pagani, Mauro Casalboni, Felice Sarcinelli e Roberto Pizzoferrato. "Hybrid organic–inorganic materials containing poled zwitterionic push–pull chromophores". Journal of the European Ceramic Society 24, n.º 6 (janeiro de 2004): 1853–56. http://dx.doi.org/10.1016/s0955-2219(03)00601-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Moran, Andrew M., Anne Myers Kelley e Sergei Tretiak. "Excited state molecular dynamics simulations of nonlinear push–pull chromophores". Chemical Physics Letters 367, n.º 3-4 (janeiro de 2003): 293–307. http://dx.doi.org/10.1016/s0009-2614(02)01583-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Centore, Roberto, Alain Fort, Barbara Panunzi, Antonio Roviello e Angela Tuzi. "Second order molecular nonlinearities in new orthopalladated push–pull chromophores". Inorganica Chimica Acta 357, n.º 4 (março de 2004): 913–18. http://dx.doi.org/10.1016/j.ica.2003.06.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Tonga, Murat. "Tunable optical properties of push-pull chromophores: End group effect". Tetrahedron Letters 61, n.º 32 (agosto de 2020): 152205. http://dx.doi.org/10.1016/j.tetlet.2020.152205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Painelli, A., L. Del Freo e F. Terenziani. "Understanding non–linearity: a simple model for push–pull chromophores". Synthetic Metals 121, n.º 1-3 (março de 2001): 1465–66. http://dx.doi.org/10.1016/s0379-6779(00)00823-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Gunaratne, Tissa, J. Reddy Challa e M. Cather Simpson. "Energy Flow in Push-Pull Chromophores: Vibrational Dynamics inpara-Nitroaniline". ChemPhysChem 6, n.º 6 (13 de junho de 2005): 1157–63. http://dx.doi.org/10.1002/cphc.200400288.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Chen, Ying, Ran Lu, WenYan Wang, Quan Wang, Xiao‐Chun Chi e Han‐Zhuang Zhang. "Solvent‐dependent ultrafast optical response of conjugated push–pull chromophores". Luminescence 35, n.º 4 (7 de janeiro de 2020): 572–79. http://dx.doi.org/10.1002/bio.3758.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Ortíz, Alejandro, Braulio Insuasty, M. Rosario Torres, M. Ángeles Herranz, Nazario Martín, Rafael Viruela e Enrique Ortí. "Aminopyrimidine-Based Donor–Acceptor Chromophores: Push–Pull versus Aromatic Behaviour". European Journal of Organic Chemistry 2008, n.º 1 (janeiro de 2008): 99–108. http://dx.doi.org/10.1002/ejoc.200700718.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Turan, Haydar Taylan, Oğuzhan Kucur, Birce Kahraman, Seyhan Salman e Viktorya Aviyente. "Design of donor–acceptor copolymers for organic photovoltaic materials: a computational study". Physical Chemistry Chemical Physics 20, n.º 5 (2018): 3581–91. http://dx.doi.org/10.1039/c7cp08176f.

Texto completo da fonte
Resumo:
80 different push–pull type organic chromophores which possess Donor–Acceptor (D–A) and Donor–Thiophene–Donor–Thiophene (D–T–A–T) structures have been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G* level.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Painelli, Anna, e Francesca Terenziani. "Optical Spectra of Push−Pull Chromophores in Solution: A Simple Model". Journal of Physical Chemistry A 104, n.º 47 (novembro de 2000): 11041–48. http://dx.doi.org/10.1021/jp0016075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Barsu, Cyril, Rouba Cheaib, Stéphane Chambert, Yves Queneau, Olivier Maury, Davy Cottet, Hartmut Wege, Julien Douady, Yann Bretonnière e Chantal Andraud. "Neutral push-pull chromophores for nonlinear optical imaging of cell membranes". Org. Biomol. Chem. 8, n.º 1 (2010): 142–50. http://dx.doi.org/10.1039/b915654b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Lehmann, C. W., e T. Dols. "Dipole moment determination in push-pull chromophores from charge density data". Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22 de agosto de 2011): C514—C515. http://dx.doi.org/10.1107/s0108767311086971.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Innocenzi, Plinio, Enrico Miorin, Giovanna Brusatin, Alessandro Abbotto, Luca Beverina, Giorgio A. Pagani, Mauro Casalboni, Felice Sarcinelli e Roberto Pizzoferrato. "Incorporation of Zwitterionic Push−Pull Chromophores into Hybrid Organic−Inorganic Matrixes". Chemistry of Materials 14, n.º 9 (setembro de 2002): 3758–66. http://dx.doi.org/10.1021/cm011231n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Painelli, Anna, e Francesca Terenziani. "A non-perturbative approach to solvatochromic shifts of push–pull chromophores". Chemical Physics Letters 312, n.º 2-4 (outubro de 1999): 211–20. http://dx.doi.org/10.1016/s0009-2614(99)00960-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Inoue, Shinobu, Yoshio Aso e Tetsuo Otsubo. "Push-pull type of diphenoquinoid chromophores as novel near-infrared dyes". Chemical Communications, n.º 12 (1997): 1105–6. http://dx.doi.org/10.1039/a701626c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

IFTIME, G., P. G. LACROIX, K. NAKATANI e A. C. RAZUS. "ChemInform Abstract: Push-Pull Azulene-Based Chromophores with Nonlinear Optical Properties." ChemInform 29, n.º 49 (18 de junho de 2010): no. http://dx.doi.org/10.1002/chin.199849100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia