Artigos de revistas sobre o tema "Chimeric competency"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Chimeric competency".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Strell, Phoebe, Anala Shetty, Clifford J. Steer e Walter C. Low. "Interspecies Chimeric Barriers for Generating Exogenic Organs and Cells for Transplantation". Cell Transplantation 31 (janeiro de 2022): 096368972211105. http://dx.doi.org/10.1177/09636897221110525.
Texto completo da fonteLacadena Calero, Juan Ramón. "BIOÉTIC AS MACAQUE-HUMAN CHIMERAS: SCIENTIFIC ASPECTS AND BIOETHICAL REFLECTIONS". Anales de la Real Academia Nacional de Farmacia, n.º 87(02) (2021): 117–21. http://dx.doi.org/10.53519/anaesranf.2021.87.02.01.
Texto completo da fonteAfanassieff, Marielle, Florence Perold, Wilhelm Bouchereau, Antoine Cadiou e Nathalie Beaujean. "Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits". Experimental Cell Research 389, n.º 2 (abril de 2020): 111908. http://dx.doi.org/10.1016/j.yexcr.2020.111908.
Texto completo da fonteHirabayashi, M., T. Goto, C. Tamura, M. Sanbo e S. Hochi. "202 EFFECT OF LEUKEMIA INHIBITORY FACTOR AND FORSKOLIN ON ESTABLISHMENT OF RAT EMBRYONIC STEM CELL LINES". Reproduction, Fertility and Development 26, n.º 1 (2014): 215. http://dx.doi.org/10.1071/rdv26n1ab202.
Texto completo da fonteTapponnier, Yann, Marielle Afanassieff, Irène Aksoy, Maxime Aubry, Anaïs Moulin, Lucas Medjani, Wilhelm Bouchereau et al. "Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors". Stem Cell Research 24 (outubro de 2017): 106–17. http://dx.doi.org/10.1016/j.scr.2017.09.001.
Texto completo da fonteWhitaker, Neal, Trista M. Berry, Nathan Rosenthal, Jay E. Gordon, Christian Gonzalez-Rivera, Kathy B. Sheehan, Hilary K. Truchan et al. "Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine". Journal of Bacteriology 198, n.º 19 (18 de julho de 2016): 2701–18. http://dx.doi.org/10.1128/jb.00378-16.
Texto completo da fonteKondoh, Gen, Yoichi Yamamoto, Kayo Yoshida, Yutaka Suzuki, Soh Osuka, Yuka Nakano, Takashi Morita e Junji Takeda. "Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method". Journal of Biochemical and Biophysical Methods 39, n.º 3 (maio de 1999): 137–42. http://dx.doi.org/10.1016/s0165-022x(99)00008-1.
Texto completo da fonteFields, Chris, e Michael Levin. "Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments". Entropy 24, n.º 6 (12 de junho de 2022): 819. http://dx.doi.org/10.3390/e24060819.
Texto completo da fonteUgale, Amol Sanjay, Gudmundur Logi Norddahl, Martin Wahlestedt, Petter Säwén, Pekka Jaako, Cornelis J. H. Pronk, Shamit Soneji, Jorg Cammenga e David Bryder. "Hematopoietic Stem Cells Are Intrinsically Protected Against MLL-ENL Mediated Transformation". Blood 124, n.º 21 (6 de dezembro de 2014): 839. http://dx.doi.org/10.1182/blood.v124.21.839.839.
Texto completo da fonteZaslavsky, Alexander, Mackenzie Adams, Sandra Wissmueller, Douglas Campbell, Hans Klingemann, Brad Walsh e Ganesh S. Palapattu. "Glypican-1 as a novel immunotherapeutic target in prostate cancer." Journal of Clinical Oncology 36, n.º 6_suppl (20 de fevereiro de 2018): 174. http://dx.doi.org/10.1200/jco.2018.36.6_suppl.174.
Texto completo da fonteNakano, K., M. Watanabe, H. Matsunari, T. Matsuda, K. Honda, M. Maehara, T. Kanai et al. "297 PRODUCTION OF CHIMERIC PORCINE FETUSES BY AGGREGATION METHOD USING PARTHENOGENETIC EMBRYOS". Reproduction, Fertility and Development 25, n.º 1 (2013): 296. http://dx.doi.org/10.1071/rdv25n1ab297.
Texto completo da fonteWei, Hairong, e Michael Brown. "MHC Class I Dk expression in hematopoietic and non-hematopoietic cells is essential to NK cell licensing and murine CMV resistance (P6308)". Journal of Immunology 190, n.º 1_Supplement (1 de maio de 2013): 182.6. http://dx.doi.org/10.4049/jimmunol.190.supp.182.6.
Texto completo da fonteMatsunari, H., K. Nakano, T. Kanai, T. Matsuda, M. Maehara, M. Watanabe, K. Umeyama, M. Nagaya, H. Nakauchi e H. Nagashima. "26 IN VIVO EXOGENIC ORGAN GENERATION WITH ORGANOGENESIS-DISABLED CLONED PIGS AS A PLATFORM". Reproduction, Fertility and Development 26, n.º 1 (2014): 127. http://dx.doi.org/10.1071/rdv26n1ab26.
Texto completo da fonteHaqshenas, G., X. Dong, H. Netter, J. Torresi e E. J. Gowans. "A chimeric GB virus B encoding the hepatitis C virus hypervariable region 1 is infectious in vivo". Journal of General Virology 88, n.º 3 (1 de março de 2007): 895–902. http://dx.doi.org/10.1099/vir.0.82467-0.
Texto completo da fonteKim, Kee-Pyo, You Wu, Juyong Yoon, Kenjiro Adachi, Guangming Wu, Sergiy Velychko, Caitlin M. MacCarthy et al. "Reprogramming competence of OCT factors is determined by transactivation domains". Science Advances 6, n.º 36 (setembro de 2020): eaaz7364. http://dx.doi.org/10.1126/sciadv.aaz7364.
Texto completo da fonteGeiger, B., D. Salomon, M. Takeichi e R. O. Hynes. "A chimeric N-cadherin/beta 1-integrin receptor which localizes to both cell-cell and cell-matrix adhesions". Journal of Cell Science 103, n.º 4 (1 de dezembro de 1992): 943–51. http://dx.doi.org/10.1242/jcs.103.4.943.
Texto completo da fonteSánchez-Moguel, Ignacio, Carmina Montiel e Ismael Bustos-Jaimes. "Therapeutic Potential of Engineered Virus-like Particles of Parvovirus B19". Pathogens 12, n.º 8 (2 de agosto de 2023): 1007. http://dx.doi.org/10.3390/pathogens12081007.
Texto completo da fonteLeventhal, Joseph, Larry D. Bozulic, Mark D. Badder, Mary Jane Elliott, Michael N. Issa, James Mathew, Iwona Konieczna e Suzanne T. Ildstad. "Evaluation Of Immunocompentence In Tolerant Chimeric Recipients Of Hematopoietic Stem Cell/Renal Transplants". Blood 122, n.º 21 (15 de novembro de 2013): 4483. http://dx.doi.org/10.1182/blood.v122.21.4483.4483.
Texto completo da fonteMatatall, Katie, Ching-Chieh Shen, Yayun Zheng e Katherine Y. King. "Chronic Mycobacterium Avium Infection Leads to Cell Autonomous Exhaustion of Hematopoietic Stem Cells". Blood 124, n.º 21 (6 de dezembro de 2014): 2947. http://dx.doi.org/10.1182/blood.v124.21.2947.2947.
Texto completo da fonteWillis, Lauren, Sara R. Fagerlie e Sattva S. Neelapu. "Evaluating Hematologist's Knowledge of CAR T-Cell Therapy in Hematologic Malignancies". Blood 132, Supplement 1 (29 de novembro de 2018): 2269. http://dx.doi.org/10.1182/blood-2018-99-115036.
Texto completo da fonteGatenbee, Chandler D., Mark Robertson-Tessi, Maximilian Strobl, Ryan O. Schenck, Bachisio Ziccheddu, Francesco Maura, Frederick Locke e Alexander R. A. Anderson. "Abstract A011: Modeling the coevolution of native and CAR T-cells in large B cell lymphoma reveals a potential biomarker for response to therapy". Cancer Research 84, n.º 3_Supplement_2 (1 de fevereiro de 2024): A011. http://dx.doi.org/10.1158/1538-7445.canevol23-a011.
Texto completo da fonteSawaisorn, Piamsiri, Korakot Atjanasuppat, Usanarat Anurathapan, Somchai Chutipongtanate e Suradej Hongeng. "Strategies to Improve Chimeric Antigen Receptor Therapies for Neuroblastoma". Vaccines 8, n.º 4 (11 de dezembro de 2020): 753. http://dx.doi.org/10.3390/vaccines8040753.
Texto completo da fonteBosch, Berend Jan, Cornelis A. M. de Haan e Peter J. M. Rottier. "Coronavirus Spike Glycoprotein, Extended at the Carboxy Terminus with Green Fluorescent Protein, Is Assembly Competent". Journal of Virology 78, n.º 14 (15 de julho de 2004): 7369–78. http://dx.doi.org/10.1128/jvi.78.14.7369-7378.2004.
Texto completo da fonteImmidisetti, Amanda, Sean Munier e Nitesh Patel. "COVD-18. POTENTIAL TO HARNESS SARS-COV-2 NEUROTROPISM IN THE DELIVERY OF ONCOLYTIC VIROTHERAPY FOR THE TREATMENT OF HIGH-GRADE GLIOMA". Neuro-Oncology 22, Supplement_2 (novembro de 2020): ii24—ii25. http://dx.doi.org/10.1093/neuonc/noaa215.101.
Texto completo da fonteJeong, Pil-Soo, Seung-Bin Yoon, Mun-Hyeong Lee, Hee-Chang Son, Hwal-Yong Lee, Sanghoon Lee, Bon-Sang Koo et al. "Embryo aggregation regulates in vitro stress conditions to promote developmental competence in pigs". PeerJ 7 (13 de dezembro de 2019): e8143. http://dx.doi.org/10.7717/peerj.8143.
Texto completo da fonteMCCARTHY, SUSAN A., IRWIN J. GRIFFITH, PHILLIP GAMBEL, LOUIS H. FRANCESCUTTI, ARUN FOTEDAR, ERWIN DIENER e THOMAS G. WEGMANN. "IMMUNOLOGICAL COMPETENCE AND HOST-SPECIFIC TOLERANCE OF ANTIBODY-FACILITATED BONE MARROW CHIMERAS". Transplantation 44, n.º 1 (julho de 1987): 97–105. http://dx.doi.org/10.1097/00007890-198707000-00021.
Texto completo da fonteYang, Yifang, Jingjun Lin, Anthony Harrington, Gabriel Cornilescu, Gee W. Lau e Yftah Tal-Gan. "Designing cyclic competence-stimulating peptide (CSP) analogs with pan-group quorum-sensing inhibition activity in Streptococcus pneumoniae". Proceedings of the National Academy of Sciences 117, n.º 3 (8 de janeiro de 2020): 1689–99. http://dx.doi.org/10.1073/pnas.1915812117.
Texto completo da fonteKITO, Seiji, Yoshiko NOGUCHI, Yuki OHTA, Tatsuya OHHATA, Masumi ABE, Naoko SHIOMI e Tadahiro SHIOMI. "Evaluation of Developmental Competence of Vitrified-warmed Early Cleavage Stage Embryos and their Application for Chimeric Mouse Production." Experimental Animals 52, n.º 2 (2003): 179–83. http://dx.doi.org/10.1538/expanim.52.179.
Texto completo da fonteLee, Joohyeong, Lian Cai, Mirae Kim, Hyerin Choi, Dongjin Oh, Ali Jawad, Eunsong Lee e Sang-Hwan Hyun. "Developmental competence of chimeric porcine embryos through the aggregation of parthenogenetic embryos and somatic cell nuclear transfer embryos". Korean Journal of Veterinary Research 63, n.º 1 (31 de março de 2023): e3. http://dx.doi.org/10.14405/kjvr.20230003.
Texto completo da fonteŚwierczek-Lasek, Barbara, Jacek Neska, Agata Kominek, Łukasz Tolak, Tomasz Czajkowski, Katarzyna Jańczyk-Ilach, Władysława Stremińska, Katarzyna Piwocka, Maria A. Ciemerych e Karolina Archacka. "Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion". International Journal of Molecular Sciences 20, n.º 16 (13 de agosto de 2019): 3932. http://dx.doi.org/10.3390/ijms20163932.
Texto completo da fonteLoskutoff, N. M., e D. C. Kraemer. "Factors influencing the developmental competence of intraspecific murine chimeras produced by multiple embryo aggregation". Theriogenology 33, n.º 1 (janeiro de 1990): 276. http://dx.doi.org/10.1016/0093-691x(90)90700-4.
Texto completo da fonteLee, Myeong S., Brian A. Dougherty, Anne C. Madeo e Donald A. Morrison. "Construction and Analysis of a Library for Random Insertional Mutagenesis in Streptococcus pneumoniae: Use for Recovery of Mutants Defective in Genetic Transformation and for Identification of Essential Genes". Applied and Environmental Microbiology 65, n.º 5 (1 de maio de 1999): 1883–90. http://dx.doi.org/10.1128/aem.65.5.1883-1890.1999.
Texto completo da fonteGustems, Montse, Andreas Busche, Martin Messerle, Peter Ghazal e Ana Angulo. "In Vivo Competence of Murine Cytomegalovirus under the Control of the Human Cytomegalovirus Major Immediate-Early Enhancer in the Establishment of Latency and Reactivation". Journal of Virology 82, n.º 20 (6 de agosto de 2008): 10302–7. http://dx.doi.org/10.1128/jvi.01255-08.
Texto completo da fonteCarstea, Ana Claudia. "Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background". World Journal of Stem Cells 1, n.º 1 (2009): 22. http://dx.doi.org/10.4252/wjsc.v1.i1.22.
Texto completo da fontePeters, Okimi, e W. Allan King. "The detection of female cell activity in male sex chromosome chimeric Rideau Arcott sheep, using the Xist gene product as a marker". SURG Journal 1, n.º 2 (21 de fevereiro de 2008): 20–25. http://dx.doi.org/10.21083/surg.v1i2.414.
Texto completo da fonteKlco, Jeffery M., Saurabh Sen, Jakob L. Hansen, Christina Lyngsø, Gregory V. Nikiforovich, Soren P. Sheikh e Thomas J. Baranski. "Complement factor 5a receptor chimeras reveal the importance of lipid-facing residues in transport competence". FEBS Journal 276, n.º 10 (maio de 2009): 2786–800. http://dx.doi.org/10.1111/j.1742-4658.2009.07002.x.
Texto completo da fonteRüedi, E., M. Sykes, S. T. Ildstad, C. H. Chester, A. Althage, H. Hengartner, D. H. Sachs e R. M. Zinkernagel. "Antiviral T cell competence and restriction specificity of mixed allogeneic (P1 + P2 → P1) irradiation chimeras". Cellular Immunology 121, n.º 1 (junho de 1989): 185–95. http://dx.doi.org/10.1016/0008-8749(89)90016-6.
Texto completo da fontePeranteau, William H., Masayuki Endo, Obinna O. Adibe e Alan W. Flake. "Evidence for an immune barrier after in utero hematopoietic-cell transplantation". Blood 109, n.º 3 (5 de outubro de 2006): 1331–33. http://dx.doi.org/10.1182/blood-2006-04-018606.
Texto completo da fontePeranteau, William H., Masayuki Endo, Obinna O. Adibe e Alan W. Flake. "Evidence for an Adaptive Immune Barrier after in Utero Hematopoietic Cell Transplantation." Blood 108, n.º 11 (16 de novembro de 2006): 3179. http://dx.doi.org/10.1182/blood.v108.11.3179.3179.
Texto completo da fonteLiu, J., M. P. Ashton, H. Sumer, T. C. Brodnicki, M. K. O'Bryan e P. J. Verma. "221 GENERATION OF GERM-LINE COMPETENT EMBRYONIC STEM CELLS FROM NON-OBESE DIABETIC (NOD) MICE USING A SINGLE INHIBITOR". Reproduction, Fertility and Development 24, n.º 1 (2012): 222. http://dx.doi.org/10.1071/rdv24n1ab221.
Texto completo da fonteChen, Song-Lin, Zhen-Xia Sha, Han-Qing Ye, Yang Liu, Yong-Sheng Tian, Yunhan Hong e Qi-Sheng Tang. "Pluripotency and Chimera Competence of an Embryonic Stem Cell Line from the Sea Perch (Lateolabrax japonicus)". Marine Biotechnology 9, n.º 1 (30 de novembro de 2006): 82–91. http://dx.doi.org/10.1007/s10126-006-6050-1.
Texto completo da fonteDiego-Mantecón, José Manuel, Elena Haro, Teresa F. Blanco e Avenilde Romo-Vázquez. "The chimera of the competency-based approach to teaching mathematics: a study of carpentry purchases for home projects". Educational Studies in Mathematics 107, n.º 2 (17 de abril de 2021): 339–57. http://dx.doi.org/10.1007/s10649-021-10032-5.
Texto completo da fonteLabosky, P. A., D. P. Barlow e B. L. Hogan. "Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines". Development 120, n.º 11 (1 de novembro de 1994): 3197–204. http://dx.doi.org/10.1242/dev.120.11.3197.
Texto completo da fonteBoyd, Nicholas, Kellie Cartledge, Huimin Cao, Vera Evtimov, Aleta Pupovac, Alan Trounson e Richard Boyd. "‘Off-the-Shelf’ Immunotherapy: Manufacture of CD8+ T Cells Derived from Hematopoietic Stem Cells". Cells 10, n.º 10 (2 de outubro de 2021): 2631. http://dx.doi.org/10.3390/cells10102631.
Texto completo da fonteSato, Hideaki, Ayumi Wakayama, Kyoko Ito, Ikuo Kashiwakura e Koichi Ito. "Functional Adaptive Immune Responses in Hematopoietic Chimeric Mice After Umbilical Cord Blood Cell Transplantation." Blood 120, n.º 21 (16 de novembro de 2012): 2995. http://dx.doi.org/10.1182/blood.v120.21.2995.2995.
Texto completo da fonteHan, Jongsuk, Hyeongbin Son, Daun Jung, Ki-Yeon Kim, Chaeyeon Jin, Hyeonwook Hwang, Soon-Suk Kang et al. "Comparison of Natural Killer Cells Differentiated from Various Pluripotent Stem Cells". International Journal of Molecular Sciences 25, n.º 15 (27 de julho de 2024): 8209. http://dx.doi.org/10.3390/ijms25158209.
Texto completo da fonteWindoffer, Reinhard, Monika Borchert-Stuhlträger e Rudolf E. Leube. "Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover". Journal of Cell Science 115, n.º 8 (15 de abril de 2002): 1717–32. http://dx.doi.org/10.1242/jcs.115.8.1717.
Texto completo da fonteWang, Wenliang, Maria Fasolino, Benjamin Cattau, Naomi Goldman, Weimin Kong, Megan A. Frederick, Sam J. McCright, Karun Kiani, Joseph A. Fraietta e Golnaz Vahedi. "Joint profiling of chromatin accessibility and CAR-T integration site analysis at population and single-cell levels". Proceedings of the National Academy of Sciences 117, n.º 10 (24 de fevereiro de 2020): 5442–52. http://dx.doi.org/10.1073/pnas.1919259117.
Texto completo da fonteMarchetti, Marta, Alain Jauneau, Delphine Capela, Philippe Remigi, Carine Gris, Jacques Batut e Catherine Masson-Boivin. "Shaping Bacterial Symbiosis With Legumes by Experimental Evolution". Molecular Plant-Microbe Interactions® 27, n.º 9 (setembro de 2014): 956–64. http://dx.doi.org/10.1094/mpmi-03-14-0083-r.
Texto completo da fonteBuck, Amanda M., Tyler-Marie Deveau, Timothy J. Henrich e Amelia N. Deitchman. "Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies". Viruses 15, n.º 5 (9 de maio de 2023): 1126. http://dx.doi.org/10.3390/v15051126.
Texto completo da fonte