Literatura científica selecionada sobre o tema "Chemistry, bioinorganic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Chemistry, bioinorganic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Chemistry, bioinorganic"
Vilar, Ramon. "Bioinorganic chemistry". Annual Reports Section "A" (Inorganic Chemistry) 105 (2009): 477. http://dx.doi.org/10.1039/b818285j.
Texto completo da fonteMcMaster, J. "Bioinorganic chemistry". Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 564. http://dx.doi.org/10.1039/b514851k.
Texto completo da fonteQue, Lawrence, e Lucia Banci. "Bioinorganic chemistry". Current Opinion in Chemical Biology 6, n.º 2 (abril de 2002): 169–70. http://dx.doi.org/10.1016/s1367-5931(02)00316-2.
Texto completo da fonteBroderick, J. "Bioinorganic chemistry". Current Opinion in Chemical Biology 7, n.º 2 (abril de 2003): 157–59. http://dx.doi.org/10.1016/s1367-5931(03)00030-9.
Texto completo da fonteBrauman, J. "Bioinorganic chemistry". Science 261, n.º 5122 (6 de agosto de 1993): 663. http://dx.doi.org/10.1126/science.8342030.
Texto completo da fonteSola, Marco. "Bioinorganic chemistry". Inorganica Chimica Acta 230, n.º 1-2 (março de 1995): 253–54. http://dx.doi.org/10.1016/0020-1693(95)90533-2.
Texto completo da fonteRaven, Emma, Nicholas E. Le Brun, Jonathan McMaster, Jan Reedijk e Nigel J. Robinson. "Bioinorganic chemistry". Dalton Transactions 42, n.º 9 (2013): 3027. http://dx.doi.org/10.1039/c2dt90214a.
Texto completo da fonteBerg, Jeremy M., e Stephen J. Lippard. "Bioinorganic chemistry". Current Opinion in Chemical Biology 8, n.º 2 (abril de 2004): 160–61. http://dx.doi.org/10.1016/j.cbpa.2004.02.014.
Texto completo da fonteTheil, Elizabeth C., e H. Holden Thorp. "Bioinorganic chemistry". Current Opinion in Chemical Biology 9, n.º 2 (abril de 2005): 95–96. http://dx.doi.org/10.1016/j.cbpa.2005.02.016.
Texto completo da fonteRosenzweig, Amy C., e David M. Dooley. "Bioinorganic chemistry". Current Opinion in Chemical Biology 10, n.º 2 (abril de 2006): 89–90. http://dx.doi.org/10.1016/j.cbpa.2006.02.036.
Texto completo da fonteTeses / dissertações sobre o assunto "Chemistry, bioinorganic"
Brophy, Megan Brunjes. "Bioinorganic Chemistry of the Human Host-Defense Protein Calprotectin". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98823.
Texto completo da fonteVita. Cataloged from PDF version of thesis.
Includes bibliographical references.
The human innate immune system responds to bacterial and fungal pathogens by releasing the metal-chelating protein calprotectin (CP) at sites of infection and in the upper layers of the epidermis. CP is a Mn(II)- and Zn(ll)-binding protein. The work described in this thesis elucidates the metal-binding properties of CP, and correlates these properties with in vitro growth inhibition of bacteria and fungi. We report that the metal-binding properties of CP are modulated by Ca(ll), and we propose a working model in which CP responds to physiological Ca(Il)-ion gradients to become a potent Zn(ll)- and Mn(Il)-chelating agent in the extracellular space. Individual chapter summaries follow. Chapter 1: Bioinorganic Chemistry of the Host Pathogen Interaction. Transition metal ions are required for all forms of life. During the course of infection, pathogenic microorganisms must acquire transition metals from the host. Three metals of interest from this standpoint are iron, zinc, and manganese. This chapter describes bacterial metal-ion homeostasis machineries, and metal-requiring processes with a focus on Zn(II) and Mn(II). This chapter then highlights the S100 family of Ca(ll)-binding proteins and discuses the Zn(Il)-, Cu(ll)-, and Mn(Il)-binding properties of S100B, S100A12, S100A7, S10OA15, and S100A8/S100A9. Finally, an overview of the scope of this thesis is presented. Chapter 2: Calcium Ion Gradients Modulate the Zinc(Il) Affinity and Antibacterial Activity of Human Calprotectin. Calprotectin (CP) is a human neutrophil protein that is produced and released by neutrophils at sites of infection, where it prevents the growth of microorganisms by sequestering bioavailable zinc(II) and manganese(II). In this chapter, we present metalbinding studies to elucidate the Zn(ll)-binding properties of CP. We report unique optical absorption and EPR spectroscopic signatures for the interfacial His 3Asp and His 4 sites of human CP by using Co(II) as a spectroscopic probe. Zinc competition titrations employing colorimetric and fluorimetric Zn(II) sensors establish that CP coordinates two Zn(II) ions / CP heterodimer. The Ca(ll)-insensitive Zn(ll) sensor ZP4 is used to determine the Kd of CP for Zn(II) in Ca(Il)-deplete and Ca(Il)-replete conditions. These competition titrations afford apparent Kdsitel = 133 58 pM and Kdsite2 = 185 219 nM in the absence of Ca(II). In the presence of excess Ca(Il) these values decrease to Kd,sitel 5 10 pM and Kd,site2 : 240 pM. In vitro antibacterial assays indicate that the metal-binding sites and Ca(ll)-replete conditions are required to inhibit the growth of Gram-negative and Gram-positive bacteria. We propose a model in which Ca(II) ion gradients modulate the antibacterial activity and Zn(Il)-binding properties of human CP. Chapter 3: High-Affinity Manganese Coordination by Human Calprotectin Is Calcium- Dependent and Requires the Histidine-Rich Site at the Dimer Interface. In this chapter, we report that the His 4 motif at the S10OA8/S100A9 dimer interface of CP is required for high-affinity Mn(II) coordination. We identify a low-temperature EPR spectroscopic signal for this site that is consistent with high-spin Mn(II) in an octahedral coordination sphere. This site could be simulated with zero-field splitting parameters D = 270 MHz and EID = 0.30 (E = 81 MHz). This analysis, combined with studies of mutant proteins, suggests that (A8)Hisl7, (A8)His27, (A9)His9l, (A9)His95 and two as-yet unidentified ligands coordinate Mn(ll) at site 2. These studies support a model in which CP responds to Ca(ll) ion gradients to become a potent metal-ion chelator in the extracellular space. Chapter 4: Contributions of the C-terminal Tail of S100A9 to High-Affinity Manganese Binding by Human Calprotectin. This chapter examines the role of the S100A9 C-terminal tail to high-affinity Mn(ll) coordination by human CP. We present a 16-member mutant family with mutations in the S100A9 C-terminal tail (residues 96-114), which houses three histidine and four acidic residues, to evaluate its contribution to Mn(ll) sequestration. These studies confirm that two His residues at positions 103 and 105 complete the octahedral coordination sphere of CP in solution. Appendix 1: Sequence Alignments of Transition-Metal Binding S100 Proteins. Sequence alignments of S100A7, S100A8, S100A9, S100A12, S100A15, and S100B proteins from multiple organisms are presented. Appendix 2: Characterization of CP Mutant Proteins by Circular Dichroism and Analytical Size Exclusion Chromatography. Additional characterization of CP and mutant proteins employed in Chapters 2-4 is presented. Appendix 3: Structures of Sensors Used In this Work. The structures of Zincon, MagFura-2, Zinpyr-1, and Zinpyr-4 are presented. Appendix 4: Manganese Binding Properties of Human Calprotectin under Conditions of High and Low Calcium. This appendix represents a collaborative work with the Drennan Lab (MIT) and Britt Lab (UC Davis) to study the Mn(Il)-CP complex in low- and high-Ca(II) conditions. We report a crystal structure of Mn(Il)-, Ca(Il)-, and Na(l)-bound CP with Mn(II) exclusively coordinated to the His6 motif. Electron spin-echo envelope modulation and electron-nuclear double resonance experiments demonstrate that the six coordinating histidine residues are spectroscopically equivalent. The observed 15N ( = %/h)y perfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating E-nitrogen of the imidazole ring of each histidine (A = [3.45, 3.71, 5.91] MHz) and the distal 6-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the affinity of CP for Mn(II) drops by two to three orders of magnitude, and Mn(II) coordinates to the His6 site as well as other sites on the protein.
by Megan Brunjes Brophy.
Ph. D. in Biological Chemistry
Yan, Siu-cheong. "Bioinorganic chemistry of antimony : interaction of antimonial with biomolecules /". View the Table of Contents & Abstract, 2004. http://sunzi.lib.hku.hk/hkuto/record/B30575540.
Texto completo da fonteSeifert, S., e J. Van Den Hoff. "Annual Report 2004 - Institute of Bioinorganic and Radiopharmaceutical Chemistry". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28695.
Texto completo da fonteSeifert, S., e H. Spies. "Annual Report 2003 - Institute of Bioinorganic and Radiopharmaceutical chemistry". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28959.
Texto completo da fonteJohannsen, Bernd, e Sepp Seifert. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 2002". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29271.
Texto completo da fonteJohannsen, Bernd, e Sepp Seifert. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 2001". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29488.
Texto completo da fonteSeifert, Sepp, e Bernd Johannsen. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 2000". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29716.
Texto completo da fonteJohannsen, Bernd, e Sepp Seifert. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 1997". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-30891.
Texto completo da fonteSeifert, Sepp, e Bernd Johannsen. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 1996". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-31238.
Texto completo da fonteSeifert, Sepp, e Bernd Johannsen. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 1995". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-31653.
Texto completo da fonteLivros sobre o assunto "Chemistry, bioinorganic"
Long, Eric C., e Michael J. Baldwin, eds. Bioinorganic Chemistry. Washington, DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1012.
Texto completo da fonteKessissoglou, Dimitris P., ed. Bioinorganic Chemistry. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1.
Texto completo da fonteA, Armstrong Fraser, ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1990.
Encontre o texto completo da fonteIvano, Bertini, ed. Bioinorganic chemistry. Mill Valley, Calif: University Science Books, 1994.
Encontre o texto completo da fonteIvano, Bertini, ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1995.
Encontre o texto completo da fonte1953-, Bill E., ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1991.
Encontre o texto completo da fontePhilip, Aisen, ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1988.
Encontre o texto completo da fonteB, Goodenough J., Ibers J. A, Jørgensen C. K, Mingos D. M. P, Neilands J. B, Palmer G. A, Reinen D, Sadler P. J, Weiss Ronald 1937- e Williams R. J. P, eds. Bioinorganic Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Encontre o texto completo da fonteAlessio, Enzo, ed. Bioinorganic Medicinal Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633104.
Texto completo da fonteThorp, H. Holden, e Vincent L. Pecoraro, eds. Mechanistic Bioinorganic Chemistry. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/ba-1995-0246.
Texto completo da fonteCapítulos de livros sobre o assunto "Chemistry, bioinorganic"
Roat-Malone, Rosette. "Bioinorganic Chemistry". In Molecular Life Sciences, 1–29. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_407-3.
Texto completo da fonteRoat-Malone, Rosette. "Bioinorganic Chemistry". In Molecular Life Sciences, 47–72. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_407.
Texto completo da fonteWeber, Birgit. "Bioinorganic Chemistry". In Coordination Chemistry, 215–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-66441-4_12.
Texto completo da fonteJordan, Robert B. "Bioinorganic Chemistry". In Principles of Inorganic Chemistry, 823–52. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-22926-8_19.
Texto completo da fonteKüpper, Frithjof C., e Peter M. H. Kroneck. "Iodine Bioinorganic Chemistry". In Iodine Chemistry and Applications, 555–89. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118909911.ch32.
Texto completo da fonteLippard, Stephen J. "Methane Monooxygenase". In Bioinorganic Chemistry, 1–12. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_1.
Texto completo da fonteMorgenstern-Badarau, Irene. "Magnetic and EPR Studies of Superoxide Dismutases (SOD): Electronic Structure of the Active Sites for the (Copper-Zinc)SOD, its Cobalt Substituted Derivative and the Iron(III)SOD from E. Coli". In Bioinorganic Chemistry, 105–11. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_10.
Texto completo da fonteHadjiliadis, N., K. Dodi e M. Louloudi. "Mechanism of Action of Thiamin Enzymes Role of Metal Ions". In Bioinorganic Chemistry, 113–28. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_11.
Texto completo da fonteLippard, Stephen J. "Platinum Anticancer Drugs". In Bioinorganic Chemistry, 131–40. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_12.
Texto completo da fonteSletten, Einar, e Nils Ăge Frøystein. "NMR Spectroscopic Structure Determination of Metal Ion — Oligonucleotide Complexes — The Results of Sequence-Selective Binding Studies". In Bioinorganic Chemistry, 141–53. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_13.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Chemistry, bioinorganic"
Glass, Jennifer. "Planetary Metabolism: Linking Solid Interiors to Gaseous Biosignatures via Bioinorganic Chemistry". In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6279.
Texto completo da fonteBren, Kara. "2023 Metals in Biology Gordon Research Conference and Bioinorganic Chemistry Gordon Research Seminar". In The 2023 Metals in Biology Gordon Research Conference and Bioinorganic Chemistry Gordon Research Seminar took place at the Four Points Sheraton / Holiday Inn Express in Ventura, California from January 20-27, 2023. US DOE, 2023. http://dx.doi.org/10.2172/1973842.
Texto completo da fonteRelatórios de organizações sobre o assunto "Chemistry, bioinorganic"
Raymond, Kenneth N. Marine Bioinorganic Chemistry Workshop Held in Heron Island on 28 June - 2nd July 1989. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1990. http://dx.doi.org/10.21236/ada218348.
Texto completo da fonteDrury, Owen Byron. Development of High Resolution X-Ray spectrometers for the Investigation of Bioinorganic Chemistry in Metalloproteins. Office of Scientific and Technical Information (OSTI), janeiro de 2007. http://dx.doi.org/10.2172/957593.
Texto completo da fonte