Literatura científica selecionada sobre o tema "Chemist activity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Chemist activity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Chemist activity"
Howder, Collin R., Kyle D. Groen e Thomas S. Kuntzleman. "JCEClassroom Activity #107. And the Oscar Goes to...A Chemist!" Journal of Chemical Education 87, n.º 10 (outubro de 2010): 1060–61. http://dx.doi.org/10.1021/ed900013z.
Texto completo da fonteEfimova, I. "Boris Belousov, Talented Scientific Chemist Dedication Page of Biography". Medical Radiology and radiation safety 66, n.º 6 (17 de dezembro de 2021): 116–18. http://dx.doi.org/10.12737/1024-6177-2021-66-6-116-118.
Texto completo da fonteChojecki, Mirosław. "NOW-a w karnawale". Wolność i Solidarność 10 (2017): 50–61. http://dx.doi.org/10.4467/25434942ws.17.003.13116.
Texto completo da fonteChojecki, Mirosław. "NOW-a w karnawale". Wolność i Solidarność 10 (2017): 50–61. http://dx.doi.org/10.4467/25434942ws.17.003.13116.
Texto completo da fonteLitterman, Nadia, Christopher Lipinski e Sean Ekins. "Small molecules with antiviral activity against the Ebola virus". F1000Research 4 (9 de fevereiro de 2015): 38. http://dx.doi.org/10.12688/f1000research.6120.1.
Texto completo da fonteRamesh, Muthusamy, e Arunachalam Muthuraman. "Quantitative Structure-Activity Relationship (QSAR) Studies for the Inhibition of MAOs". Combinatorial Chemistry & High Throughput Screening 23, n.º 9 (22 de dezembro de 2020): 887–97. http://dx.doi.org/10.2174/1386207323666200324173231.
Texto completo da fonteKilah, Nathan L., e Eric Meggers. "Sixty Years Young: The Diverse Biological Activities of Metal Polypyridyl Complexes Pioneered by Francis P. Dwyer". Australian Journal of Chemistry 65, n.º 9 (2012): 1325. http://dx.doi.org/10.1071/ch12275.
Texto completo da fonteDearden, John C. "The History and Development of Quantitative Structure-Activity Relationships (QSARs)". International Journal of Quantitative Structure-Property Relationships 2, n.º 2 (julho de 2017): 36–46. http://dx.doi.org/10.4018/ijqspr.2017070104.
Texto completo da fonteHodgson, Geoffrey M., e Michael Polanyi. "Editorial introduction to ‘Collectivist planning’ by Michael Polanyi (1940)". Journal of Institutional Economics 15, n.º 6 (20 de agosto de 2019): 1055–74. http://dx.doi.org/10.1017/s1744137419000377.
Texto completo da fonteM.K.M, ABDUL LATHIFF, SURESH R e SENTHAMARAI R. "A REVIEW ON ANTICANCER ACTIVITIES OF NOVEL DIHYDRO PYRIMIDINONES / THIONES DERIVATIVES". YMER Digital 21, n.º 03 (31 de março de 2022): 460–72. http://dx.doi.org/10.37896/ymer21.03/47.
Texto completo da fonteTeses / dissertações sobre o assunto "Chemist activity"
Fournier, Etienne. "Intérêt de la prise en compte des variabilités de l’activité et de l’acceptabilité dans le cadre d’une conception centrée utilisateurs des situations de travail collaboratives Humain-Robot". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALH011.
Texto completo da fonteThe European Commission is encouraging the use of collaborative robots (cobots) to assist humans in their work. However, cobots seem to have difficulty in favorably transforming work situations when they do not consider the variabilities of the situations. The aim of this thesis was therefore to characterize variability in the context of a cobotic implementation, and to guide a design approach focused on future users, using acceptability, acceptance and user experience approaches. An activity analysis was carried out in a chemical laboratory as part of a future cobotic implementation. 11 operators were observed during their activity and 34 took part in semi-directive interviews. The results identified glovebox activity as the workstation that would benefit most from cobotic collaboration. They also showed that certain activities were rendered invisible due to a discrepancy between prescribed work and actual activity, resulting in regular exposure to risks that could be avoided through cobotic implementation. We have thus identified several variabilities with effects on operator activity. These were used to design experimental paradigms to test the effect of cobotic collaboration. Three User Tests were carried out with a total of 212 participants, who were asked to perform industrial assembly tasks where one or more variabilities were considered in the cobotic design. The task was performed either alone, or in pairs with another human or with a cobot (ABB's YuMi). Different types of measurement were carried out: workload (assessed via NASA TLX, Hart, 2006; Hart & Staveland, 1988), number of errors, number of gestures, completion time, degree of acceptability of cobotic collaboration (assessed via TAM, Venkatesh et al., 2012) and simulated risk exposure. Cobotic collaboration reduced the negative effects of several variabilities (e.g. variability in difficulty level, variability in operator expertise) on operator mental load and task success. Participants had a higher task success rate when collaborating with a cobot, even though they otherwise took longer to complete the task. In addition, participants reported enjoying collaborating with a cobot and having confidence in the information it provided (measured via a scale of items from Martin, 2018). Finally, when the cobot adapted to the human's safety constraints, the latter exposed himself to fewer risks. From a theoretical point of view, these empirical studies made it possible to propose a framework integrating models of variability at work, and to shed light on the effects of cobotic collaboration on the human and his task. From a practical point of view, these different studies have enabled us to propose a grid for identifying variabilities and to formulate recommendations designed to support the implementation of cobotic collaboration
Catti, Federica. "4,5-dihydropyrazoles : novel chemistry and biological activity". Thesis, St Andrews, 2007. http://hdl.handle.net/10023/351.
Texto completo da fonteDavidson, Nicola E. "Glucosinolates and isothiocyanates : chemistry and biological activity". Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/14230.
Texto completo da fonteKulkarni, M. M. "Chemistry and biological activity of natural products". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1986. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3276.
Texto completo da fonteLi, Ju-Yun. "Quantitative structure-activity relationship studies in medicinal chemistry". Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1062596938.
Texto completo da fontePathirana, Navin Deepal. "Chemistry and biological activity of iron quinoneoximic complexes". Thesis, London Metropolitan University, 1990. http://repository.londonmet.ac.uk/2977/.
Texto completo da fonteCox, Kaleb Woodrow. "Synthesis and Biological Activity of Indolinones". Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1421165680.
Texto completo da fonteNunes, R. J. "The chemistry and biological activity of cyclic imidobenzenesulphonyl derivatives". Thesis, University of Hertfordshire, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370823.
Texto completo da fontePaige, Mikell Atkin. "Modular synthesis of Annonaceous acetogenins and their activity against H-116 human solid colon tumor cells". Full text, Acrobat Reader required, 2003. http://viva.lib.virginia.edu/etd/diss/ArtsSci/Chemistry/2003/Paige/Dissertation.pdf.
Texto completo da fonteMurphy, Veronica L. "Optical Activity of Achiral Molecules". Thesis, New York University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10192177.
Texto completo da fonteOptical activity is typically first introduced to a prospective chemist in her sophomore year organic chemistry course. Here, she is taught that optical activity is a consequence of chirality, for example, L-tartaric acid has a specific rotation of +12° at the sodium D-line. However, this leaves said chemist with a wildly skewed and rather vague understanding of the concept of optical activity. There are two major problems with the current understanding of optical activity. The first is that both theory and experiment have shown that optical activity is, in fact, not a consequence of chirality. Molecules belonging to one of four achiral point groups (Cs, C2 v, S4, and D 2d) can display optical activity in particular directions. However, measurement requires an anisotropic medium which presents major challenges. The second problem is that we lack structure-property relationships; specific rotations generally speaking are impossible to connect to molecular structure. Herein, we emphasize optical activity in achiral molecules whose high symmetry and simplified electronic structure are used to establish structure–property relationships. First, achiral optical activity is emphasized by showing that achiral polyaromatic hydrocarbons (PAH) are actually significantly more optically active than their helicene isomers. Next, small, planar, conjugated hydrocarbons are used to interpret optical activity by analysis of their π wave functions that can be intuited from structure. Finally, it is shown that aromaticity is generally deleterious for optical activity. A simple explanation is offered based on Kekule structures.
Livros sobre o assunto "Chemist activity"
Pitaud, Henri. Paysan et militant: Mes chemins sauvages : souvenirs 1921-1940. Beauvoir-sur-Mer: Etrave, 2001.
Encontre o texto completo da fontePaxton, Robert O. Le temps des chemises vertes: Révoltes paysannes et fascisme rural, 1929-1939. Paris: Editions du Seuil, 1996.
Encontre o texto completo da fontePillon, Lilianna Z. Surface activity of petroleum derived lubricants. Boca Raton: Taylor & Francis, 2010.
Encontre o texto completo da fontePillon, Lilianna Z. Surface activity of petroleum derived lubricants. Boca Raton [Fla.]: Taylor & Francis, 2011.
Encontre o texto completo da fonteSylvio, Canuto, ed. Solvation effects on molecules and biomolecules: Computational methods and applications. [Dordrecht]: Springer, 2008.
Encontre o texto completo da fonteCairns, Donald. Essentials of pharmaceutical chemistry. 3a ed. London: Pharmaceutical Press, 2008.
Encontre o texto completo da fonteDelehedde, Maryse, e Hugues Lortat-Jacob. New developments in therapeutic glycomics. Trivandrum, Kerala, India: Research Signpost, 2006.
Encontre o texto completo da fonteCasy, Alan F. The steric factor in medicinal chemistry: Dissymmetric probesof pharmacological receptors. New York: Plenum Press, 1993.
Encontre o texto completo da fonteH, Dewar George, ed. The steric factor in medicinal chemistry: Dissymmetric probes of pharmacological receptors. New York: Plenum Press, 1993.
Encontre o texto completo da fonteTsujii, Kaoru. Surface activity: Principles, phenomena, and applications. San Diego: Academic Press, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Chemist activity"
Owen, Michael J. "Siloxane Surface Activity". In Advances in Chemistry, 705–39. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0224.ch040.
Texto completo da fonteMahaffy, Peter. "Chemistry Education and Human Activity". In Chemistry Education, 1–26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679300.ch1.
Texto completo da fonteDouglas, Bodie. "Optical Activity in Coordination Chemistry". In ACS Symposium Series, 275–85. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0565.ch022.
Texto completo da fonteChoudhary, M. Iqbal, Sammer Yousuf e Atta-ur-Rahman. "Withanolides: Chemistry and Antitumor Activity". In Natural Products, 3465–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_150.
Texto completo da fonteDuben, Anthony J. "Activity Coefficients". In Case Studies in the Virtual Physical Chemistry Laboratory, 125–60. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-55018-8_7.
Texto completo da fonteSheehan, John C., Hans Georg Zachau e William B. Lawson. "The Chemistry of Etamycin". In Ciba Foundation Symposium - Amino Acids and Peptides with Antimetabolic Activity, 149–56. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719114.ch12.
Texto completo da fonteSharma, Varsha, Akshay Katiyar e R. C. Agrawal. "Glycyrrhiza Glabra: Chemistry and Pharmacological Activity". In Reference Series in Phytochemistry, 1–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26478-3_21-1.
Texto completo da fonteSharma, Varsha, Akshay Katiyar e R. C. Agrawal. "Glycyrrhiza glabra: Chemistry and Pharmacological Activity". In Reference Series in Phytochemistry, 87–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-27027-2_21.
Texto completo da fonteDembitsky, Valery M., Alexander O. Terent’ev e Dmitri O. Levitsky. "Aziridine Alkaloids: Origin, Chemistry and Activity". In Natural Products, 977–1006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_93.
Texto completo da fonteBurgot, Jean-Louis. "Activities and Activity Coefficients". In Ionic Equilibria in Analytical Chemistry, 37–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-8382-4_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Chemist activity"
Saputro, Ari Wahyu, Antuni Wiyarsi e Jaslin Ikhsan. "Chemtrepreneur, introducing entrepreneurial activity in colloid chemistry". In PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL PROCESSING AND ENGINEERING (4th IC3PE). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0204706.
Texto completo da fontePutri, Devi A., Riyadatus Solihah, Rianur Oktavia e Sri Fatmawati. "Phytochemical and antioxidant activity of Nicotiana tabacum extracts". In 1ST INTERNATIONAL SEMINAR ON CHEMISTRY AND CHEMISTRY EDUCATION (1st ISCCE-2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0110413.
Texto completo da fonteWelchinskaya, Elena. "CHEMISTRY AND ANTITUMOUR ACTIVITY OF 5-BROMOURACILE’S DERIVATIVES". In CBU International Conference on Integration and Innovation in Science and Education. Central Bohemia University, 2013. http://dx.doi.org/10.12955/cbup.2013.45.
Texto completo da fonteAlves, Luis, João Portel, Sílvia Sousa, Jorge Leitão e Ana Martins. "Antibacterial activity of cyclam derivatives". In 4th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/ecmc-4-05595.
Texto completo da fonteAghaee, Mina, Mahnaz Abbaszadeh Alishahi e Faranak Manteghi. "Antimicrobial Activity of Ba-MOF". In International Electronic Conference on Synthetic Organic Chemistry. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecsoc-26-13725.
Texto completo da fonteRetnosari, Rini, Ihsan B. Rachman, Sutrisno Sutrisno, Meyga E. F. Sari, Dedek Sukarianingsih e Yaya Rukayadi. "The antibacterial activity of vanillin derivative compounds". In 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0051523.
Texto completo da fonteAnnuur, Rose Malina, Dyah Ayu Titisari, Rahma Rahayu Dinarlita, Arif Fadlan, Taslim Ersam, Titik Nuryastuti e Mardi Santoso. "Synthesis and anti-tuberculosis activity of trisindolines". In THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082493.
Texto completo da fonteDiamond, Gill, Erika Figgins, Denny Gao, Annelise E. Barron e Kent Kirshenbaum. "Broad-Spectrum Activity of Antimicrobial Peptoids". In International Electronic Conference on Medicinal Chemistry. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecmc2022-13491.
Texto completo da fonteČesnek, Michal, e Antonín Holý. "Biological activity of selected guanidinopurines". In XIIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2005. http://dx.doi.org/10.1135/css200507249.
Texto completo da fonteLulan, Theodore Y. K., Sri Fatmawati, Mardi Santoso e Taslim Ersam. "Free radical scavenging activity of Artocarpus champeden extracts". In THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082460.
Texto completo da fonteRelatórios de organizações sobre o assunto "Chemist activity"
Y. Wang. Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry. Office of Scientific and Technical Information (OSTI), novembro de 2004. http://dx.doi.org/10.2172/840430.
Texto completo da fonteG.H. Nieder-Westermann. Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry. Office of Scientific and Technical Information (OSTI), maio de 2005. http://dx.doi.org/10.2172/841372.
Texto completo da fonteBrown, Michael. Update on Activity 6: Target Solution Chemistry Determination of Iron Sulfate. Office of Scientific and Technical Information (OSTI), setembro de 2014. http://dx.doi.org/10.2172/1157513.
Texto completo da fonteKim, Dong-Sang, Chuck Z. Soderquist, Jonathan P. Icenhower, B. PETER McGrail, Randall D. Scheele, Bruce K. McNamara, Larry M. Bagaasen et al. Tc Reductant Chemistry and Crucible Melting Studies with Simulated Hanford Low-Activity Waste. Office of Scientific and Technical Information (OSTI), março de 2005. http://dx.doi.org/10.2172/15020035.
Texto completo da fonteKeinan, Ehud. Asian Chemists speak with one voice. AsiaChem Magazine, novembro de 2020. http://dx.doi.org/10.51167/acm00001.
Texto completo da fonteНечипуренко, Павло Павлович, Тетяна Валеріївна Старова, Тетяна Валеріївна Селіванова, Анна Олександрівна Томіліна e Олександр Давидович Учитель. Use of Augmented Reality in Chemistry Education. CEUR-WS.org, novembro de 2018. http://dx.doi.org/10.31812/123456789/2658.
Texto completo da fonteCronauer, D. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004. Office of Scientific and Technical Information (OSTI), maio de 2006. http://dx.doi.org/10.2172/928626.
Texto completo da fonteLeighton, C., D. Layton-Matthews, J. M. Peter e M. G. Gadd. Application of pyrite chemistry to recognize a distal expression of hydrothermal activity in the MacMillan Pass SEDEX district, Yukon. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/313646.
Texto completo da fonteMustain, William. Understanding the Effects of Surface Chemistry and Microstructure on the Activity and Stability of Pt Electrocatalysts on Non-Carbon Supports. Office of Scientific and Technical Information (OSTI), fevereiro de 2015. http://dx.doi.org/10.2172/1169894.
Texto completo da fonteCronauer, D. C. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005. Office of Scientific and Technical Information (OSTI), abril de 2011. http://dx.doi.org/10.2172/1011836.
Texto completo da fonte