Artigos de revistas sobre o tema "Chemiresistive gas sensor"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Chemiresistive gas sensor".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Schober, Sebastian A., Yosra Bahri, Cecilia Carbonelli e Robert Wille. "Neural Network Robustness Analysis Using Sensor Simulations for a Graphene-Based Semiconductor Gas Sensor". Chemosensors 10, n.º 5 (21 de abril de 2022): 152. http://dx.doi.org/10.3390/chemosensors10050152.
Texto completo da fonteZhou, Guangying, Bingsheng Du, Jie Zhong, Le Chen, Yuyu Sun, Jia Yue, Minglang Zhang et al. "Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor". Materials 17, n.º 21 (24 de outubro de 2024): 5190. http://dx.doi.org/10.3390/ma17215190.
Texto completo da fonteKim, Myeong Gyu, e Yun-Hyuk Choi. "Gas-Sensing Properties of Co9S8 Films Toward Formaldehyde, Ethanol, and Hydrogen Sulfide". Materials 17, n.º 23 (24 de novembro de 2024): 5743. http://dx.doi.org/10.3390/ma17235743.
Texto completo da fonteBezdek, Máté J., Shao-Xiong Lennon Luo, Kang Hee Ku e Timothy M. Swager. "A chemiresistive methane sensor". Proceedings of the National Academy of Sciences 118, n.º 2 (31 de dezembro de 2020): e2022515118. http://dx.doi.org/10.1073/pnas.2022515118.
Texto completo da fonteJe, Yeonjin, e Sang-Soo Chee. "Controlling the Morphology of Tellurene for a High-Performance H2S Chemiresistive Room-Temperature Gas Sensor". Nanomaterials 13, n.º 19 (5 de outubro de 2023): 2707. http://dx.doi.org/10.3390/nano13192707.
Texto completo da fonteZhang, Run, Cong Qin, Hari Bala, Yan Wang e Jianliang Cao. "Recent Progress in Spinel Ferrite (MFe2O4) Chemiresistive Based Gas Sensors". Nanomaterials 13, n.º 15 (27 de julho de 2023): 2188. http://dx.doi.org/10.3390/nano13152188.
Texto completo da fonteSchober, Sebastian A., Cecilia Carbonelli e Robert Wille. "Simulating Defects in Environmental Sensor Networks Using Stochastic Sensor Models". Engineering Proceedings 6, n.º 1 (17 de maio de 2021): 88. http://dx.doi.org/10.3390/i3s2021dresden-10094.
Texto completo da fonteDougami, Naganori, Takeshi Miyata, Taishi Orita, Tadashi Nakatani, Rui Kakunaka, Takafumi Taniguchi, Hirokazu Mitsuhashi e Shoichiro Nakao. "Hot-wire-type micromachined chemiresistive gas sensors for battery-powered city gas alarms". Japanese Journal of Applied Physics 64, n.º 1 (1 de janeiro de 2025): 01SP13. https://doi.org/10.35848/1347-4065/ada29c.
Texto completo da fonteHuang, Baoyu, Xinwei Tong, Xiangpeng Zhang, Qiuxia Feng, Marina N. Rumyantseva, Jai Prakash e Xiaogan Li. "MXene/NiO Composites for Chemiresistive-Type Room Temperature Formaldehyde Sensor". Chemosensors 11, n.º 4 (21 de abril de 2023): 258. http://dx.doi.org/10.3390/chemosensors11040258.
Texto completo da fonteYang, Taicong, Fengchun Tian, James A. Covington, Feng Xu, Yi Xu, Anyan Jiang, Junhui Qian, Ran Liu, Zichen Wang e Yangfan Huang. "Resistance-Capacitance Gas Sensor Based on Fractal Geometry". Chemosensors 7, n.º 3 (15 de julho de 2019): 31. http://dx.doi.org/10.3390/chemosensors7030031.
Texto completo da fonteWei, Minghui, Xuerong Shi, Min Zhu, Shengming Zhang, Heng Zhang, Haiyu Yao e Shusheng Xu. "Research Progress on Chemiresistive Carbon Monoxide Sensors". Nanomaterials 15, n.º 4 (16 de fevereiro de 2025): 303. https://doi.org/10.3390/nano15040303.
Texto completo da fonteAdamek, Martin, Jiri Mlcek, Nela Skowronkova, Magdalena Zvonkova, Miroslav Jasso, Anna Adamkova, Josef Skacel et al. "3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors". Sensors 23, n.º 15 (31 de julho de 2023): 6817. http://dx.doi.org/10.3390/s23156817.
Texto completo da fonteKumawat, Meenakshi, Devyani Thapliyal, George D. Verros, Raj Kumar Arya, Sanghamitra Barman, Gopinath Halder e Pooja Shandilya. "PANI-Based Hydrogen Sulfide Gas Sensors". Coatings 12, n.º 2 (31 de janeiro de 2022): 186. http://dx.doi.org/10.3390/coatings12020186.
Texto completo da fonteMeka, Divakara, Linda A. George e Shalini Prasad. "Triethanolamine Nanocomposite-based Chemiresistive Nitrogen Dioxide Gas Sensor". Journal of the Association for Laboratory Automation 14, n.º 2 (abril de 2009): 69–75. http://dx.doi.org/10.1016/j.jala.2008.08.007.
Texto completo da fonteChen, Xiaohu, Ryan Wreyford e Noushin Nasiri. "Recent Advances in Ethylene Gas Detection". Materials 15, n.º 17 (23 de agosto de 2022): 5813. http://dx.doi.org/10.3390/ma15175813.
Texto completo da fonteJiang, Yang, Ning Tang, Cheng Zhou, Ziyu Han, Hemi Qu e Xuexin Duan. "A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography". Nanoscale 10, n.º 44 (2018): 20578–86. http://dx.doi.org/10.1039/c8nr04198a.
Texto completo da fonteKruse, Peter. "(Invited) Chemiresistive Water Quality Sensors: Challenges and Progress". ECS Meeting Abstracts MA2022-01, n.º 52 (7 de julho de 2022): 2135. http://dx.doi.org/10.1149/ma2022-01522135mtgabs.
Texto completo da fonteMankar, R. B., e V. D. Kapse. "Cerium Modified Nanocrystalline SmFeO3 for Ethanol Sensing". Oriental Journal Of Chemistry 40, n.º 2 (30 de abril de 2024): 362–68. http://dx.doi.org/10.13005/ojc/400206.
Texto completo da fonteJha, Ravindra Kumar, Aman Nanda e Navakanta Bhat. "Ultrasonication assisted fabrication of a tungsten sulfide/tungstite heterostructure for ppb-level ammonia detection at room temperature". RSC Advances 10, n.º 37 (2020): 21993–2001. http://dx.doi.org/10.1039/d0ra02553d.
Texto completo da fonteManikandan, V., Iulian Petrila, S. Vigneselvan, R. S. Mane, Bogdan Vasile, Raghu Dharmavarapu, Stefan Lundgaard, Saulius Juodkazis e J. Chandrasekaran. "A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO2) for sensing carbon dioxide gas and humidity". RSC Advances 10, n.º 7 (2020): 3796–804. http://dx.doi.org/10.1039/c9ra09579a.
Texto completo da fonteFedorov, Fedor S., Maksim A. Solomatin, Margitta Uhlemann, Steffen Oswald, Dmitry A. Kolosov, Anatolii Morozov, Alexey S. Varezhnikov et al. "Quasi-2D Co3O4 nanoflakes as an efficient gas sensor versus alcohol VOCs". Journal of Materials Chemistry A 8, n.º 15 (2020): 7214–28. http://dx.doi.org/10.1039/d0ta00511h.
Texto completo da fonteLin, Chia-Yu, Po-Chin Nien, Wei-Yi Feng, Chii-Wann Lin, Jim Tunney e Kuo-Chuan Ho. "Chemiresistive NO Gas Sensor Based on Zinc Oxide Nanorods". Journal of Bionanoscience 2, n.º 2 (1 de dezembro de 2008): 102–8. http://dx.doi.org/10.1166/jbns.2008.032.
Texto completo da fonteBabar, B. M., S. H. Sutar, S. H. Mujawar, S. S. Patil, U. D. Babar, U. T. Pawar, P. M. Kadam, P. S. Patil e L. D. Kadam. "V2O5-rGO based chemiresistive gas sensor for NO2 detection". Materials Science and Engineering: B 298 (dezembro de 2023): 116827. http://dx.doi.org/10.1016/j.mseb.2023.116827.
Texto completo da fonteKodu, Margus, Artjom Berholts, Tauno Kahro, Jens Eriksson, Rositsa Yakimova, Tea Avarmaa, Indrek Renge, Harry Alles e Raivo Jaaniso. "Highly Sensitive NH3 Sensors Using CVD and Epitaxial Graphene Functionalised with Vanadium(V) Oxide: A Comparative Study". Proceedings 2, n.º 13 (20 de novembro de 2018): 854. http://dx.doi.org/10.3390/proceedings2130854.
Texto completo da fontePazniak, Hanna, Ilya A. Plugin, Polina M. Sheverdyaeva, Laetitia Rapenne, Alexey S. Varezhnikov, Antonio Agresti, Sara Pescetelli et al. "Alcohol Vapor Sensor Based on Quasi-2D Nb2O5 Derived from Oxidized Nb2CTz MXenes". Sensors 24, n.º 1 (20 de dezembro de 2023): 38. http://dx.doi.org/10.3390/s24010038.
Texto completo da fonteJayaramulu, Kolleboyina, Marilyn Esclance DMello, Kamali Kesavan, Andreas Schneemann, Michal Otyepka, Stepan Kment, Chandrabhas Narayana et al. "A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor". Journal of Materials Chemistry A 9, n.º 32 (2021): 17434–41. http://dx.doi.org/10.1039/d1ta03246a.
Texto completo da fonteFu, Li, Shixi You, Guangjun Li, Xingxing Li e Zengchang Fan. "Application of Semiconductor Metal Oxide in Chemiresistive Methane Gas Sensor: Recent Developments and Future Perspectives". Molecules 28, n.º 18 (20 de setembro de 2023): 6710. http://dx.doi.org/10.3390/molecules28186710.
Texto completo da fonteTang, Xiaohui, Jean-Pierre Raskin, Nicolas Reckinger, Yiyi Yan, Nicolas André, Driss Lahem e Marc Debliquy. "Enhanced Gas Detection by Altering Gate Voltage Polarity of Polypyrrole/Graphene Field-Effect Transistor Sensor". Chemosensors 10, n.º 11 (9 de novembro de 2022): 467. http://dx.doi.org/10.3390/chemosensors10110467.
Texto completo da fonteLim, Namsoo, Jae-Sung Lee e Young Tae Byun. "Negatively-Doped Single-Walled Carbon Nanotubes Decorated with Carbon Dots for Highly Selective NO2 Detection". Nanomaterials 10, n.º 12 (14 de dezembro de 2020): 2509. http://dx.doi.org/10.3390/nano10122509.
Texto completo da fonteGao, Tuo, Yongchen Wang, Yi Luo, Chengwu Zhang, Zachariah Pittman, Alexandra Oliveira, Howard Craig, Jing Zhao e Brian G. Willis. "Fast and Reversible Chemiresistive Sensors for Robust Detection of Organic Vapors Using Oleylamine-Functionalized Palladium Nanoparticles". International Journal of High Speed Electronics and Systems 27, n.º 03n04 (setembro de 2018): 1840027. http://dx.doi.org/10.1142/s012915641840027x.
Texto completo da fonteKumar, Sanjeev, Navdeep Kaur, Anshul Kumar Sharma, Aman Mahajan e R. K. Bedi. "Improved Cl2 sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers". RSC Advances 7, n.º 41 (2017): 25229–36. http://dx.doi.org/10.1039/c7ra02212c.
Texto completo da fonteSun, Kai, Guanghui Zhan, Hande Chen e Shiwei Lin. "Low-Operating-Temperature NO2 Sensor Based on a CeO2/ZnO Heterojunction". Sensors 21, n.º 24 (10 de dezembro de 2021): 8269. http://dx.doi.org/10.3390/s21248269.
Texto completo da fonteZvonkova, Magdalena, Martin Adamek, Nela Skowronkova, Stepan Dlabaja, Jiri Matyas, Miroslav Jasso, Anna Adamkova, Jiri Mlcek, Richardos Nikolaos Salek e Martin Buran. "Compact 3D-Printed Unit for Separation of Simple Gas Mixtures Combined with Chemiresistive Sensors". Sensors 24, n.º 13 (6 de julho de 2024): 4391. http://dx.doi.org/10.3390/s24134391.
Texto completo da fonteSakhuja, Neha, Ravindra Kumar Jha e Navakanta Bhat. "Tungsten Disulphide Nanosheets for High-Performance Chemiresistive Ammonia Gas Sensor". IEEE Sensors Journal 19, n.º 24 (15 de dezembro de 2019): 11767–74. http://dx.doi.org/10.1109/jsen.2019.2936978.
Texto completo da fonteShao, Shaofeng, Hongyan Wu, Fan Jiang, Shimin Wang, Tao Wu, Yating Lei, Ralf Koehn e Wei-Feng Rao. "Regulable switching from p- to n-type behavior of ordered nanoporous Pt-SnO2 thin films with enhanced room temperature toluene sensing performance". RSC Advances 6, n.º 27 (2016): 22878–88. http://dx.doi.org/10.1039/c5ra24736e.
Texto completo da fonteKodu, Margus, Tea Avarmaa, Hugo Mändar, Rando Saar e Raivo Jaaniso. "Structure-Dependent CO2 Gas Sensitivity of La2O2CO3 Thin Films". Journal of Sensors 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/9591081.
Texto completo da fontePetrushenko, Sergey I., Mateusz Fijalkowski, Kinga Adach, Denis Fedonenko, Yevhenii M. Shepotko, Sergei V. Dukarov, Volodymyr M. Sukhov, Alina L. Khrypunova e Natalja P. Klochko. "Low-Temperature, Highly Sensitive Ammonia Sensors Based on Nanostructured Copper Iodide Layers". Chemosensors 13, n.º 2 (22 de janeiro de 2025): 29. https://doi.org/10.3390/chemosensors13020029.
Texto completo da fonteSysoev, Vitalii I., Mikhail O. Bulavskiy, Dmitry V. Pinakov, Galina N. Chekhova, Igor P. Asanov, Pavel N. Gevko, Lyubov G. Bulusheva e Alexander V. Okotrub. "Chemiresistive Properties of Imprinted Fluorinated Graphene Films". Materials 13, n.º 16 (11 de agosto de 2020): 3538. http://dx.doi.org/10.3390/ma13163538.
Texto completo da fonteChen, Xiyu, Min Zeng, Jianhua Yang, Nantao Hu, Xiaoyong Duan, Wei Cai, Yanjie Su e Zhi Yang. "Two-Dimensional Bimetallic Phthalocyanine Covalent-Organic-Framework-Based Chemiresistive Gas Sensor for ppb-Level NO2 Detection". Nanomaterials 13, n.º 10 (17 de maio de 2023): 1660. http://dx.doi.org/10.3390/nano13101660.
Texto completo da fonteChiou, Jin-Chern, Chin-Cheng Wu e Tse-Mei Lin. "Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment". Polymers 11, n.º 3 (5 de março de 2019): 423. http://dx.doi.org/10.3390/polym11030423.
Texto completo da fonteSysoev, Victor V., Andrey V. Lashkov, Alexey Lipatov, Ilya A. Plugin, Michael Bruns, Dirk Fuchs, Alexey S. Varezhnikov, Mustahsin Adib, Martin Sommer e Alexander Sinitskii. "UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations". Sensors 22, n.º 24 (14 de dezembro de 2022): 9815. http://dx.doi.org/10.3390/s22249815.
Texto completo da fonteWagner, Ricarda, Daniela Schönauer-Kamin e Ralf Moos. "Novel Operation Strategy to Obtain a Fast Gas Sensor for Continuous ppb-Level NO2 Detection at Room Temperature Using ZnO—A Concept Study with Experimental Proof". Sensors 19, n.º 19 (23 de setembro de 2019): 4104. http://dx.doi.org/10.3390/s19194104.
Texto completo da fontePolyakov, Maxim, Victoria Ivanova, Darya Klyamer, Baybars Köksoy, Ahmet Şenocak, Erhan Demirbaş, Mahmut Durmuş e Tamara Basova. "A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors". Molecules 25, n.º 9 (29 de abril de 2020): 2073. http://dx.doi.org/10.3390/molecules25092073.
Texto completo da fonteNagare, Amruta B., Namdev S. Harale, Sawanta S. Mali, Sarita S. Nikam, Pramod S. Patil, Chang Kook Hong e Annasaheb V. Moholkar. "Chemiresistive ammonia gas sensor based on branched nanofibrous polyaniline thin films". Journal of Materials Science: Materials in Electronics 30, n.º 13 (29 de maio de 2019): 11878–87. http://dx.doi.org/10.1007/s10854-019-01514-7.
Texto completo da fonteChang, Won Suk, Jung Hyun Kim, Daeho Kim, Sung Ho Cho e Seung Kwon Seol. "Individually Addressable Suspended Conducting-Polymer Wires in a Chemiresistive Gas Sensor". Macromolecular Chemistry and Physics 215, n.º 17 (28 de julho de 2014): 1633–38. http://dx.doi.org/10.1002/macp.201400220.
Texto completo da fonteFilipovic, Lado, e Siegfried Selberherr. "Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors". Nanomaterials 12, n.º 20 (18 de outubro de 2022): 3651. http://dx.doi.org/10.3390/nano12203651.
Texto completo da fonteGargiulo, Valentina, Michela Alfè, Laura Giordano e Stefano Lettieri. "Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites". Chemosensors 10, n.º 8 (22 de julho de 2022): 290. http://dx.doi.org/10.3390/chemosensors10080290.
Texto completo da fonteNam, Bumhee, Tae-Kyung Ko, Soong-Keun Hyun e Chongmu Lee. "CO Sensing Properties of Chemiresistive In2O3/SnO2 Composite Nanoparticle Sensors". Journal of Nanoscience and Nanotechnology 20, n.º 7 (1 de julho de 2020): 4344–48. http://dx.doi.org/10.1166/jnn.2020.17577.
Texto completo da fonteKodu, Margus, Rainer Pärna, Tea Avarmaa, Indrek Renge, Jekaterina Kozlova, Tauno Kahro e Raivo Jaaniso. "Gas-Sensing Properties of Graphene Functionalized with Ternary Cu-Mn Oxides for E-Nose Applications". Chemosensors 11, n.º 8 (15 de agosto de 2023): 460. http://dx.doi.org/10.3390/chemosensors11080460.
Texto completo da fonteHwa, Yeongsik, Yeonjin Je, Hyunsung Jung e Sang-Soo Chee. "Enhanced Reliability of NO2 Chemiresistive Room Temperature Sensor Based on SnSeX and Its Module Integration". ECS Meeting Abstracts MA2024-02, n.º 65 (22 de novembro de 2024): 4370. https://doi.org/10.1149/ma2024-02654370mtgabs.
Texto completo da fonte