Literatura científica selecionada sobre o tema "Chemical Sciences"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Chemical Sciences".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Chemical Sciences"
Cekovic, Zivorad. "Challenges for chemical sciences in the 21st century". Chemical Industry 58, n.º 4 (2004): 151–57. http://dx.doi.org/10.2298/hemind0404151c.
Texto completo da fonteFenner, Kathrin, e Paul G. Tratnyek. "QSARs and computational chemistry methods in environmental chemical sciences". Environmental Science: Processes & Impacts 19, n.º 3 (2017): 185–87. http://dx.doi.org/10.1039/c7em90008b.
Texto completo da fonteMcGee, H. A., e P. K. Mercure. "Reunification of the chemical sciences". Journal of Chemical Education 63, n.º 3 (março de 1986): 256. http://dx.doi.org/10.1021/ed063p256.
Texto completo da fonteKim, Sangtae. "Cyberinfrastructure: Enabling the Chemical Sciences". Journal of Chemical Information and Modeling 46, n.º 3 (maio de 2006): 938. http://dx.doi.org/10.1021/ci060100+.
Texto completo da fonteKulkarni, G. U., B. Bagchi e J. Gopalakrishnan. "Emerging directions in chemical sciences". Journal of Chemical Sciences 115, n.º 5-6 (outubro de 2003): 319. http://dx.doi.org/10.1007/bf02708224.
Texto completo da fonteShuai, Zhigang. "United to Advance Chemical Sciences". Nachrichten aus der Chemie 68, n.º 10 (outubro de 2020): 3. http://dx.doi.org/10.1002/nadc.20204102348.
Texto completo da fonteBhat, SubhasChandra. "INTERDEPENDENCE BETWEEN CHEMICAL SCIENCES AND MEDICAL SCIENCES - AN OVERVIEW." International Journal of Advanced Research 7, n.º 5 (31 de maio de 2019): 1349–51. http://dx.doi.org/10.21474/ijar01/9173.
Texto completo da fonteInokuma, Tsubasa, e Shinichi Sato. "Chemical Biology for Pharmaceutical Sciences (Development of Practical Chemical Biotechnology)". YAKUGAKU ZASSHI 138, n.º 1 (1 de janeiro de 2018): 37–38. http://dx.doi.org/10.1248/yakushi.17-00186-f.
Texto completo da fonteFullmer, June Z., e Seymour H. Mauskopf. "Chemical Sciences in the Modern World". Technology and Culture 36, n.º 3 (julho de 1995): 727. http://dx.doi.org/10.2307/3107281.
Texto completo da fontePalermo, Alejandra. "The Future of the Chemical Sciences". Chemistry International 40, n.º 3 (1 de julho de 2018): 4–6. http://dx.doi.org/10.1515/ci-2018-0303.
Texto completo da fonteTeses / dissertações sobre o assunto "Chemical Sciences"
Milewski, Thomas. "Stratospheric chemical-dynamical ensemble data assimilation". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110352.
Texto completo da fonteL'assimilation d'ensemble utilise une méthode de Monte-Carlo pour estimer les covariances d'erreur du moment qui permettent le transfert d'information des variables observées aux variables corrélées à celles-ci. Puisque les vents sont très peu observés dans la stratosphère et que les modèles y présentent des biais, la possibilité de contraindre l'état dynamique du modèle par l'assimilation d'observations de température et d'ozone par la technique d'ensemble est tentée. L'applicabilité de l'assimilation d'ensemble dans un système chimique/dynamique couplé est testé lors d'une expérience idéalisé (modèle parfait) de simulation de système d'observation avec le modèle de chimie-climat IGCM-FASTOC. La localisation des covariances est indispensable à la stabilité du système d'assimilation avec filtre de Kalman d'ensemble (EnKF) et les paramètres optimaux offrent une forte contrainte sur l'état dynamique global du modèle lorsque l'on assimile des observations satellites synthétiques de température et d'ozone stratosphériques uniquement. Le couplage entre l'ozone, la température et les vents est étudié dans le système EnKF optimisé. Les observations de température et d'ozone stratosphériques créent des incréments dynamiques bénéfiques lors des phases d'analyses. Il y a également une rétroaction lors de la phase de prédiction du système d'assimilation de données, qui aide à contraindre davantage les états chimiques et dynamiques globaux. L'impact potentiel de l'assimilation de données postérieures au temps d'analyse en mode multivarié est estimé avec un lisseur d'ensemble de Kalman (EnKS). L'assimilation d'observations additionnelles asynchrones, ayant jusqu'à 48 heures d'écart avec le temps d'analyse, offre des améliorations aux analyses de l'EnKF presque équivalentes à celles obtenues par assimilation d'une quantité égale d'observations additionnelles synchrones. L'EnKS présente des impacts bénéfiques sur l'état d'analyse des variables non observées mais des impacts mitigés sur l'état analysé des variables observées. La capacité de contraindre les vents stratosphériques non-observés grâce à l'assimilation d'observations d'ozone est démontrée dans le système d'assimilation d'ensemble avec l'EnKF et l'EnKS. Les covariances d'erreurs chimiques- dynamiques sont essentielles à la réduction de l'erreur de vents dans l'état analysé du modèle, en particulier les covariances ozone-vent qui font effet dans la haute troposphère et basse stratosphère. Des expériences additionelles avec un état initial fortement biaisé, en l'occurence un réchauffement stratosphérique soudain, confirment l'abilité de l'EnKF à transférer de façon efficace l'information depuis les observations d'ozone vers l'état dynamique du modèle.
Gerothanassis, I. P. "Application of a DSc in the School of Chemical Sciences". Thesis, University of East Anglia, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539366.
Texto completo da fonteGunasekaran, Subbiah, M. Sadikbatcha e P. Sivaraman. "Mapping chemical science research in India: A bibliometric study". NISCAIR, New Delhi, India, 2006. http://hdl.handle.net/10150/299580.
Texto completo da fonteLohse, Peter A. (Peter Andreas). "Distribution of knowledge production in the chemical sciences in the US". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65786.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 43-44).
A citation analysis was carried out to gain an understanding of the geographical and institutional distribution of highly cited articles in the chemical sciences in the US over the last thirty years. The contribution of US chemistry departments was determined by quantifying the number of highly cited articles published by individual authors or groups of authors from the same department. Articles stemming from collaborative research across schools were not considered. The results show that a dilution in intradepartmental knowledge production has occurred both on a geographical and institutional level. Three chemistry departments have emerged as strong producers of high impact articles over the last thirty years: the University of North Carolina, Texas A&M University and the University of Utah. In terms of aggregate numbers of highly cited articles these three schools are in the top ten of over seventy schools which were evaluated; their chemistry departments are en par in terms of scientific impact with those from Ivy League schools like Stanford University, Harvard University and the California Institute of Technology. While the literature reports increasing concentration for the US research base, the present analysis shows a dilution in chemical knowledge production when collaborative efforts across departments and schools are excluded. This finding suggests that the increase in concentration in the US science base is not a uniform trend when studied on a more granular level.
by Peter A. Lohse.
M.B.A.
Degrand, Elisabeth. "Evolving Chemical Reaction Networks". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257491.
Texto completo da fonteEtt mål med syntetisk biologi är att genomföra användbara funktioner med biokemiska reaktioner, antingen genom omprogrammering av levande celler eller programmering av artificiella vesiklar. I detta perspektiv anser vi Chemical Reaction Networks (CRNs) som ett programmeringsspråk. Det senaste arbetet har visat att kontinuerliga CRNs med dynamik som beskrivs av vanliga differentialekvationer är Turingkompletta. Det betyder att en funktion över de realla talen som kan beräknas av en Turing-maskin i godtycklig precision, kan beräknas av en CRN över en ändlig uppsättning molekylära arter. Beviset använder en algoritm som, givet en beräkningsbar funktion som presenteras som lösningen av ett PIVP (Polynomial Initial Values Problem), genererar en ändlig CRN för att implementera den. I de genererade CRN:erna spelar molekylkoncentrationerna rollen som informationsbärare, på samma sätt som proteiner i celler. I detta examensarbete undersöker vi ett tillvägagångssätt baserat på en evolutionär algoritm för att bygga en kontinuerlig CRN som approximerar en verklig funktion med en ändlig uppsättning av värden för funktionen. Tanken är att använda parallell genetisk algoritm i två nivåer. En första algoritm används för att utveckla nätets struktur, medan den andra möjliggör att optimera parametrarna för CRN:erna vid varje steg. Vi jämför de CRN som genereras av vår metod på olika funktioner. De CRN som hittas av evolutionen ger ofta bra resultat med ganska oväntade lösningar.
Attwell, Jane Louise. "Heterogeneous chemical processing by stratospheric aerosol". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390491.
Texto completo da fonteWebb, Penelope Eugenia. "Chemical inflation for assisted assembly". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/114060.
Texto completo da fontePage 85 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 81-84).
This thesis aims to utilize an output method for popup fabrication, using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process, starting from the manufacturing side, whereby a structural body is given its form, through to the user side, where the form potential of a soft structure is activated and a form becomes complete. The process discussed in this thesis is similar in nature to existing chemical reaction home-activation kits, such as hand warmers or cold packs, however, with the inclusion of volume-change and automatic assembly, this method gives way to alternative application possibilities and component-free construction. Along with structural configuration, this thesis provides material development for the application of volume changing membranes for the purpose of material surprise and transformation.`
by Penelope Eugenia Webb.
S.M.
Puhl, Jacqueline L. "Chemical instabilities in isotropic turbulent flows". Doctoral thesis, Universite Libre de Bruxelles, 1988. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213327.
Texto completo da fonteKhannoon, Eraqi Radwan R. "Comparative chemical ecology, behaviour, and evolutionary genetics of acanthodactlylus boskianus (Squamata: Lacertidae) : comparative chemical ecology, behaviour and evolution". Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2415.
Texto completo da fonteBallhaus, Florentine. "Investigating plant autophagy with new chemical modulators". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428075.
Texto completo da fonteLivros sobre o assunto "Chemical Sciences"
Ramasami, Ponnadurai, Minu Gupta Bhowon, Sabina Jhaumeer Laulloo e Henri Li Kam Wah, eds. Emerging Trends in Chemical Sciences. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-60408-4.
Texto completo da fonteStig, Pedersen-Bjergaard, e Rasmussen Knut, eds. Chemical analysis in pharmaceutical sciences. Chichester, West Sussex: John Wiley & Sons Inc., 2012.
Encontre o texto completo da fonte1922-, Spindel William, Simon Robert Michael e American Association for the Advancement of Science., eds. Frontiers in the chemical sciences. Washington, D.C: American Association for the Advancement of Science, 1986.
Encontre o texto completo da fonteBhatia, S. C. Biochemistry in applied sciences (chemical). Delhi: Shree Pub. House : distributors, Jian Book Depot, 1985.
Encontre o texto completo da fonteBowden, Mary Ellen. Chemical achievers: The human face of the chemical sciences. Philadelphia: Chemical Heritage Foundation, 1997.
Encontre o texto completo da fonteChemical genomics. Cambridge: Cambridge University Press, 2012.
Encontre o texto completo da fonteH, Mauskopf Seymour, ed. Chemical sciences in the modern world. Philadelphia: University of Pennsylvania Press, 1993.
Encontre o texto completo da fonte1945-, Morgan P. H., ed. Computational methods in the chemical sciences. Chichester, England: Ellis Horwood, 1989.
Encontre o texto completo da fonteUniversity of Greenwich. School of Biological and Chemical Sciences. Course documents and submissions: Chemical sciences. London: University of Greenwich., 1993.
Encontre o texto completo da fontePelletier, S. W. Alkaloids: Chemical and biological perspectives. Amsterdam: Pergamon, 2001.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Chemical Sciences"
Myers, Jeffrey K. "Chemical Denaturation". In Molecular Life Sciences, 1–7. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_646-1.
Texto completo da fonteMyers, Jeffrey K. "Chemical Denaturation". In Molecular Life Sciences, 75–80. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_646.
Texto completo da fonteArigoni, Duilio. "Organic Synthesis and the Life Sciences". In Chemical Synthesis, 601–19. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0255-8_27.
Texto completo da fonteBewersdorff, A., P. Borckmans e S. C. Müller. "Chemical Pattern Formation". In Fluid Sciences and Materials Science in Space, 257–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46613-7_8.
Texto completo da fonteViers, Jérôme, e Priscia Oliva. "Chemical Weathering". In Encyclopedia of Earth Sciences Series, 1–5. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_143-1.
Texto completo da fonteBickmore, Barry R., e Matthew C. F. Wander. "Chemical Bonds". In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_4-1.
Texto completo da fonteViers, Jérôme, e Priscia Oliva. "Chemical Weathering". In Encyclopedia of Earth Sciences Series, 237–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_143.
Texto completo da fonteBickmore, Barry R., e Matthew C. F. Wander. "Chemical Bonds". In Encyclopedia of Earth Sciences Series, 234–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_4.
Texto completo da fonteDuarte, Isabel M. R., Celso S. F. Gomes e António B. Pinho. "Chemical Weathering". In Encyclopedia of Earth Sciences Series, 114–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_49.
Texto completo da fonteKondepudi, Dilip. "Chemical Thermodynamics". In Encyclopedia of Sciences and Religions, 344–52. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1126.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Chemical Sciences"
Ad’hiya, Eka, e Endang W. Laksono. "Students’ analytical thinking skills and chemical literacy concerning chemical equilibrium". In THE 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: Coverage of Basic Sciences toward the World’s Sustainability Challanges. Author(s), 2018. http://dx.doi.org/10.1063/1.5062824.
Texto completo da fonteYING, SHUH-JING, e HUNG NGUYEN. "Reduced chemical kinetics for propane combustion". In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-546.
Texto completo da fonte"The Application of Chemical Genomics and Chemical Proteomics in Cell Autophagy". In 2020 International Conference on Social Sciences and Social Phenomena. Scholar Publishing Group, 2020. http://dx.doi.org/10.38007/proceedings.0001195.
Texto completo da fonteIngenito, Antonella, Antonio Agresta, Roberto Andriani e Fausto Gamma. "Electro-chemical propulsion for space exploration". In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0161.
Texto completo da fonteGNOFFO, P., e R. MCCANDLESS. "Three-dimensional AOTV flowfields in chemical nonequilibrium". In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-230.
Texto completo da fontePARK, CHUL, JOHN HOWE, RICHARD JAFFE e GRAHAM CANDLER. "Chemical-kinetic problems of future NASA missions". In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-464.
Texto completo da fonteWESTBROOK, C. "Chemical kinetic modeling of higher hydrocarbon fuels". In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-139.
Texto completo da fonteFrederickson, Kraig, Yauheni Ivanou, Sergey B. Leonov, J. William Rich, Walter R. Lempert e Igor V. Adamovich. "Development of a Chemical Carbon Monoxide Laser". In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0142.
Texto completo da fonteSwain, Shovan, Lalit Mohan S., Venkatesh Choppella e Y. R. Reddy. "Model Driven Approach for Virtual Lab Authoring - Chemical Sciences Labs". In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT). IEEE, 2018. http://dx.doi.org/10.1109/icalt.2018.00062.
Texto completo da fonteSlavinskaya, Nadja, Uwe Riedel, Mhedi Abbasi, JanHendrik Starke, Aisulu Tursynbai, Michael Frenklach, Andrew Packard, Wenyu Li, James Oreluk e Arun Hedge. "Consistent Chemical Mechanism from Collaborative Data Processing". In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0181.
Texto completo da fonteRelatórios de organizações sobre o assunto "Chemical Sciences"
Moore, Joel E., Alán Aspuru-Guzik, Bela Bauer, Sue Coppersmith, Wibe (Bert) de Jong, Thomas Devereaux, Marivi Fernandez-Serra et al. Basic Energy Sciences Roundtable: Opportunities for Quantum Computing in Chemical and Materials Sciences. Office of Scientific and Technical Information (OSTI), novembro de 2017. http://dx.doi.org/10.2172/1616253.
Texto completo da fontePHILLIPS, JULIA M. Physical and Chemical Sciences Center Research Briefs 2001. Office of Scientific and Technical Information (OSTI), dezembro de 2001. http://dx.doi.org/10.2172/791900.
Texto completo da fonteAuthor, Not Given. Chemical and Laser Sciences Division annual report, 1988. Office of Scientific and Technical Information (OSTI), junho de 1989. http://dx.doi.org/10.2172/6095225.
Texto completo da fonteHaines, N., ed. Chemical and Laser Sciences Division annual report 1989. Office of Scientific and Technical Information (OSTI), junho de 1990. http://dx.doi.org/10.2172/6876779.
Texto completo da fonteRaber, D. J. Challenges for the Chemical Sciences in the 21st Century. Office of Scientific and Technical Information (OSTI), novembro de 2002. http://dx.doi.org/10.2172/834006.
Texto completo da fonteScielzo, N. D., S. Quaglioni e D. Shaughnessy. Nucleosynthesis for Science and Security: Preparing for a Nuclear and Chemical Sciences Program at FRIB. Office of Scientific and Technical Information (OSTI), outubro de 2019. http://dx.doi.org/10.2172/1571733.
Texto completo da fonteVook, F. L., e G. A. Samara. Physical and Chemical Sciences Center: Research briefs. Volume 9-94. Office of Scientific and Technical Information (OSTI), dezembro de 1994. http://dx.doi.org/10.2172/10107582.
Texto completo da fonteMattern, P. L. Physical and Chemical Sciences Center - research briefs. Volume 1-96. Office of Scientific and Technical Information (OSTI), dezembro de 1994. http://dx.doi.org/10.2172/380371.
Texto completo da fonteBallinger, Marcel Y., e Michael J. Lindberg. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II. Office of Scientific and Technical Information (OSTI), março de 2017. http://dx.doi.org/10.2172/1408199.
Texto completo da fonteRehr, John J. Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration. Office of Scientific and Technical Information (OSTI), agosto de 2012. http://dx.doi.org/10.2172/1156688.
Texto completo da fonte