Literatura científica selecionada sobre o tema "Chemical Langevin equation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Chemical Langevin equation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Chemical Langevin equation"
Gillespie, Daniel T. "The chemical Langevin equation". Journal of Chemical Physics 113, n.º 1 (julho de 2000): 297–306. http://dx.doi.org/10.1063/1.481811.
Texto completo da fonteSchnoerr, David, Guido Sanguinetti e Ramon Grima. "The complex chemical Langevin equation". Journal of Chemical Physics 141, n.º 2 (14 de julho de 2014): 024103. http://dx.doi.org/10.1063/1.4885345.
Texto completo da fonteLi, Tao. "Chemical Langevin Equation for Complex Reactions". Journal of Physical Chemistry A 124, n.º 5 (15 de janeiro de 2020): 810–16. http://dx.doi.org/10.1021/acs.jpca.9b10108.
Texto completo da fonteIlie, Silvana, e Monjur Morshed. "Automatic Simulation of the Chemical Langevin Equation". Applied Mathematics 04, n.º 01 (2013): 235–41. http://dx.doi.org/10.4236/am.2013.41a036.
Texto completo da fonteZwanzig, Robert. "A Chemical Langevin Equation with Non-Gaussian Noise†". Journal of Physical Chemistry B 105, n.º 28 (julho de 2001): 6472–73. http://dx.doi.org/10.1021/jp0034630.
Texto completo da fonteIlie, Silvana, e Monjur Morshed. "Adaptive Time-Stepping Using Control Theory for the Chemical Langevin Equation". Journal of Applied Mathematics 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/567275.
Texto completo da fonteIlie, Silvana, e Alexandra Teslya. "An adaptive stepsize method for the chemical Langevin equation". Journal of Chemical Physics 136, n.º 18 (14 de maio de 2012): 184101. http://dx.doi.org/10.1063/1.4711143.
Texto completo da fonteMu, Wei-Hua, Zhong-Can Ou-Yang e Xiao-Qing Li. "From Chemical Langevin Equations to Fokker—Planck Equation: Application of Hodge Decomposition and Klein—Kramers Equation". Communications in Theoretical Physics 55, n.º 4 (abril de 2011): 602–4. http://dx.doi.org/10.1088/0253-6102/55/4/15.
Texto completo da fonteGhosh, Atiyo, Andre Leier e Tatiana T. Marquez-Lago. "The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions". Theoretical Biology and Medical Modelling 12, n.º 1 (2015): 5. http://dx.doi.org/10.1186/s12976-015-0001-6.
Texto completo da fonteKhanin, Raya, e Desmond J. Higham. "Chemical Master Equation and Langevin regimes for a gene transcription model". Theoretical Computer Science 408, n.º 1 (novembro de 2008): 31–40. http://dx.doi.org/10.1016/j.tcs.2008.07.007.
Texto completo da fonteTeses / dissertações sobre o assunto "Chemical Langevin equation"
Mélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Texto completo da fonteXie, Zhi. "Modelling genetic regulatory networks: a new model for circadian rhythms in Drosophila and investigation of genetic noise in a viral infection process". Phd thesis, Lincoln University. Agriculture and Life Sciences Division, 2007. http://theses.lincoln.ac.nz/public/adt-NZLIU20070712.144258/.
Texto completo da fonteDerivaux, Jean-Francois. "Stochastic thermodynamics of transport phenomena and reactive systems: an extended local equilibrium approach". Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/308809.
Texto completo da fonteOver the last decades, nanotechnology has experienced great steps forwards, opening new ways to manipulate micro- and nanosystems. These advances motivated the development of a thermodynamic theory for such systems, taking fully into account the unavoidable fluctuations appearing at that scale. This ultimately leads to an ensemble of experimental and theoretical results forming the emergent field of stochastic thermodynamics. In this thesis, we propose an original theoretical approach to stochastic thermodynamics, based on the extension of the local equilibrium hypothesis (LEH) to fluctuating variables in small systems. The approach provides new definitions of stochastic thermodynamic quantities, whose evolution is given by stochastic differential equations (SDEs).We applied this new formalism to a diverse range of systems: heat or mass diffusive transport, coupled transport phenomena (thermodiffusion), and linear or non-linear chemical systems. In each model, we used our theory to define key stochastic thermodynamic quantities. A great emphasis has been put on entropy and the different contributions to its evolution (entropy flux and entropy production) throughout this thesis. Other examples include also the stochastic Helmholtz energy, stochastic excess entropy production and stochastic efficiencies in coupled transport. We investigated how the statistical properties of these quantities are affected by external thermodynamic constraints and by the kinetics of the system. We first studied how the thermodynamic state of the system (equilibrium \textit{vs.} non-equilibrium) strongly impacts the distribution of entropy production. We then extended those findings to other related quantities, such as the Helmholtz free energy and excess entropy production. We also analysed how some external control parameters could lead to bimodality in stochastic efficiencies distributions.In addition, non-linearities affect stochastic thermodynamics quantities in different ways. Using the example of the Schlögl chemical model, we computed the average dissipation of the fluctuations in a non-linear system. Such systems can also undergo a bifurcation, and we studied how the moments and the distribution of entropy production change while crossing the critical point.All these properties were investigated with theoretical analyses and supported by numerical simulations of the SDEs describing the system. It allows us to show that properties of the evolution equations and external constraints could strongly reflect in the statistical properties of stochastic thermodynamic quantities.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Dana, Saswati. "Computational Studies Of Uncertainty In Intra-Cellular Biochemical Reaction Systems". Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2069.
Texto completo da fonteLivros sobre o assunto "Chemical Langevin equation"
Coffey, William T., Yu P. Kalmykov e J. T. Waldron. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering (World Scientific Series in Contemporary Chemical Physics Vol. 14) - Second Edition. 2a ed. World Scientific Publishing Company, 2004.
Encontre o texto completo da fonteHenriksen, Niels Engholm, e Flemming Yssing Hansen. Dynamic Solvent Effects: Kramers Theory and Beyond. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0011.
Texto completo da fonteCapítulos de livros sobre o assunto "Chemical Langevin equation"
Goychuk, Igor. "Viscoelastic Subdiffusion: Generalized Langevin Equation Approach". In Advances in Chemical Physics, 187–253. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118197714.ch5.
Texto completo da fonteCooke, Jennie. "A Fractional Langevin Equation Approach to Diffusion Magnetic Resonance Imaging". In Advances in Chemical Physics, 279–378. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118135242.ch5.
Texto completo da fonteGiordano, M., P. Grigolini, D. Leporini e P. Marin. "Slow Motion EPR Spectra in Terms of a Generalized Langevin Equation". In Advances in Chemical Physics, 321–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470142868.ch8.
Texto completo da fonteCoffey, W. T., Yu P. Kalmykov e E. S. Massawe. "The Effective Eigenvalue Method and Its Application to Stochastic Problems in Conjunction with the Nonlinear Langevin Equation". In Advances in Chemical Physics, 667–792. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470141441.ch10.
Texto completo da fonteAdelman, S. A. "Generalized Langevin Equations and Many-Body Problems in Chemical Dynamics". In Advances in Chemical Physics, 143–253. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470142639.ch2.
Texto completo da fonteMurray, Richard M. "Stochastic Modeling and Analysis". In Biomolecular Feedback Systems. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691161532.003.0004.
Texto completo da fonteMerkt, FrÉdÉric. "Molecular-physics aspects of cold chemistry". In Current Trends in Atomic Physics, 82–141. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198837190.003.0003.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Chemical Langevin equation"
Altinkaya, Mustafa A., e Ercan E. Kuruoglu. "Modeling enzymatic reactions via chemical Langevin-Levy equation". In 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204746.
Texto completo da fonteContou-Carrere, M. N., e P. Daoutidis. "Decoupling of fast and slow variables in chemical Langevin equations with fast and slow reactions". In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1655396.
Texto completo da fonte