Literatura científica selecionada sobre o tema "Charge Transfert Inefficiency"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Charge Transfert Inefficiency".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Charge Transfert Inefficiency"
Pasquier, J. F. "Native and irradiated Charge Transfer Inefficiency characterization". EAS Publications Series 45 (2010): 61–66. http://dx.doi.org/10.1051/eas/1045010.
Texto completo da fonteNightingale, James W., Richard J. Massey, Jacob Kegerreis e Richard G. Hayes. "PyAutoCTI: Open-Source Charge Transfer Inefficiency Calibration". Journal of Open Source Software 9, n.º 98 (1 de junho de 2024): 4904. http://dx.doi.org/10.21105/joss.04904.
Texto completo da fonteStetson, Peter B. "On the Photometric Consequences of Charge‐Transfer Inefficiency in WFPC2". Publications of the Astronomical Society of the Pacific 110, n.º 754 (dezembro de 1998): 1448–63. http://dx.doi.org/10.1086/316286.
Texto completo da fonteManeuski, Dzmitry. "Simulation of the charge transfer inefficiency of column parallel CCDs". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 591, n.º 1 (junho de 2008): 252–54. http://dx.doi.org/10.1016/j.nima.2008.03.066.
Texto completo da fonteBouchy, F., J. Isambert, C. Lovis, I. Boisse, P. Figueira, G. Hébrard e F. Pepe. "Charge Transfer Inefficiency effect for high-precision radial velocity measurements". EAS Publications Series 37 (2009): 247–53. http://dx.doi.org/10.1051/eas/0937031.
Texto completo da fonteSmith, P. H., J. P. D. Gow, P. Pool e A. D. Holland. "Charge transfer inefficiency in the pre- and post-irradiated Swept Charge Device CCD236". Journal of Instrumentation 10, n.º 03 (24 de março de 2015): C03041. http://dx.doi.org/10.1088/1748-0221/10/03/c03041.
Texto completo da fonteBlake, C. H., S. Halverson e A. Roy. "The impact of charge transfer inefficiency on Extreme Precision Doppler measurements". Journal of Instrumentation 12, n.º 04 (3 de abril de 2017): C04003. http://dx.doi.org/10.1088/1748-0221/12/04/c04003.
Texto completo da fonteRhodes, Jason, Alexie Leauthaud, Chris Stoughton, Richard Massey, Kyle Dawson, William Kolbe e Natalie Roe. "The Effects of Charge Transfer Inefficiency (CTI) on Galaxy Shape Measurements". Publications of the Astronomical Society of the Pacific 122, n.º 890 (abril de 2010): 439–50. http://dx.doi.org/10.1086/651675.
Texto completo da fonteTownsley, L. K., P. S. Broos, J. A. Nousek e G. P. Garmire. "Modeling charge transfer inefficiency in the Chandra Advanced CCD Imaging Spectrometer". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 486, n.º 3 (julho de 2002): 751–84. http://dx.doi.org/10.1016/s0168-9002(01)02156-8.
Texto completo da fonteToyozumi, Hiroyuki, e Michael C. B. Ashley. "Intra-Pixel Sensitivity Variation and Charge Transfer Inefficiency — Results of CCD Scans". Publications of the Astronomical Society of Australia 22, n.º 3 (2005): 257–66. http://dx.doi.org/10.1071/as05013.
Texto completo da fonteTeses / dissertações sobre o assunto "Charge Transfert Inefficiency"
Salih, Alj Antoine. "Effets des radiations et propriétés électriques d’un capteur CCD-sur-CMOS à tranchées profondes actives pour l’imagerie haute-performance". Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0048.
Texto completo da fonteCMOS imaging devices (Complementary Metal Oxide Semiconductor) have numerous applications in high-resolution terrestrial imaging and scientific imaging (e.g., Sentinel-2, MSL2020, and MMX). The remarkable advancements made in CMOS imaging technology over the past five years, both in terms of photodetection performance and noise reduction, have paved the way for very high-performance applications, where CCDs (Charge Coupled Devices) were previously considered the best candidates.For such applications, the development of this technology must focus on improving the signal-to-noise ratio (SNR) to achieve optimal spatial resolution in satellite images for terrestrial observation (sub-meter resolution). The first lever for improvement is increasing detector sensitivity, to optimize inter-pixel charge transfer and reduce parasitic dark currents. The second lever is maximizing charge collection capacity and controlling saturation effects. All these parameters must be evaluated considering the space environment, particularly the effects of radiation (ionization and displacement), which can significantly degrade the electrical properties of image sensors.The CMOS technology currently favored for future high-resolution terrestrial imaging projects integrates a specific feature of active deep trench isolation. When combined with the appropriate trench potential, this technology allows the control of charge movements within the silicon. As a result, CCD-on-CMOS charge transfer registers using this technology have been successfully implemented. Theoretical analysis and characterization of certain two-phase CCD register architectures have yielded very promising results and opened up new perspectives.The objectives of this thesis are multiple: to improve the understanding of this new type of charge transfer pixel, particularly the active deep trench isolation feature, through an in-depth analysis of the physical phenomena involved and the effects of radiation (both in terms of ionizing dose and displacement). Additionally, it aims to evaluate and propose design optimizations for various operating modes (Time Delay Integration, Electron Multiplication), to achieve the targeted SNR performance while meeting radiation tolerance requirements for high-resolution imaging
Capítulos de livros sobre o assunto "Charge Transfert Inefficiency"
Pestieau, Pierre. "Efficiency of the welfare state". In The Welfare State in the European Union, 78–90. Oxford University PressOxford, 2005. http://dx.doi.org/10.1093/oso/9780199261017.003.0008.
Texto completo da fonteColonnelli, Emanuele, e Nicole Ntungire. "Construction and Public Procurement in Uganda". In Mining for Change, 326–48. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851172.003.0015.
Texto completo da fonteAlabbasi, Yousef, e Kamaljeet Sandhu. "Blockchain Innovation and Information Technology at GCC". In Research Anthology on Blockchain Technology in Business, Healthcare, Education, and Government, 751–64. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5351-0.ch044.
Texto completo da fonteAlabbasi, Yousef, e Kamaljeet Sandhu. "The Framework for Blockchain Innovation and the Impact on Digital Economic Transformation". In Research Anthology on Blockchain Technology in Business, Healthcare, Education, and Government, 172–84. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5351-0.ch009.
Texto completo da fonteMusungwini, Samuel, Yvonne Madongonda e Hope Hogo. "Contemporary Agriculture Marketing Strategies for Smallholder Farmers in a Developing Context". In Sustainable Practices for Agriculture and Marketing Convergence, 200–225. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-2011-2.ch009.
Texto completo da fonteMatos, Douglas Nuernberg de, e Samantha Zamberlan Leyraud. "Use of antimicrobial seal in central venous catheter in hemodialysis patients". In Health and Medicine: Science, Care, and Discoveries. Seven Editora, 2024. http://dx.doi.org/10.56238/sevened2023.004-037.
Texto completo da fonteHnylianska, Olha. "BENCHMARKING AS A NEW COMPONENT FOR EFFECTIVE DEVELOPMENT OF THE ENTERPRISE". In Scientific space in the conditions of global transformations of the modern world. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-255-5-5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Charge Transfert Inefficiency"
Nyren, Daniel, Marc Tardiff e Kenneth Desabrais. "Passive Stabilization and Stability Quantification of Helicopter Sling Load Payloads". In Vertical Flight Society 71st Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10227.
Texto completo da fonteSOPCZAK, ANDRÉ. "LCFI CHARGE TRANSFER INEFFICIENCY STUDIES FOR CCD VERTEX DETECTORS". In Proceedings of the 9th Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773678_0140.
Texto completo da fonteGow, Jason P. D., e Neil J. Murray. "Simplified charge transfer inefficiency correction in CCDs by trap-pumping". In SPIE Astronomical Telescopes + Instrumentation, editado por Andrew D. Holland e James Beletic. SPIE, 2016. http://dx.doi.org/10.1117/12.2232706.
Texto completo da fonteKelman, Bradley, Thibaut Prod'homme, Jesper Skottfelt, Frederic Lemmel, Matej Arko, Patricia Liebing, Peter Verhoeve, Ben Dryer, David Hall e Michael Hubbard. "Calibrating and correcting charge transfer inefficiency in CCDs using Pyxel". In X-Ray, Optical, and Infrared Detectors for Astronomy X, editado por Andrew D. Holland e James Beletic. SPIE, 2022. http://dx.doi.org/10.1117/12.2629896.
Texto completo da fonteGow, J. P. D., e N. J. Murray. "Charge transfer inefficiency mitigation in a CCD by trap pumping". In 2016 16th European Conference on Radiation and its Effects on Components and Systems (RADECS). IEEE, 2016. http://dx.doi.org/10.1109/radecs.2016.8093128.
Texto completo da fonteGrant, C. E., M. W. Bautz, S. E. Kissel, B. LaMarr e G. Y. Prigozhin. "Temperature dependence of charge transfer inefficiency in Chandra X-ray CCDs". In SPIE Astronomical Telescopes + Instrumentation, editado por David A. Dorn e Andrew D. Holland. SPIE, 2006. http://dx.doi.org/10.1117/12.672019.
Texto completo da fonteAhmed, Saad, David J. Hall, Cian Crowley, Jesper M. Skottfelt, Ben Dryer, George Seabroke, José Hernández e Andrew D. Holland. "Gaia CCDs: charge transfer inefficiency measurements between five years of flight". In X-ray, Optical, and Infrared Detectors for Astronomy IX, editado por Andrew D. Holland e James Beletic. SPIE, 2020. http://dx.doi.org/10.1117/12.2562162.
Texto completo da fonteHou, Rui, Shanghong Zhao, Zhoushi Yao, Jie Xu e Xiaofeng Jiang. "Analysis of charge transfer inefficiency of CCD equipment under proton radiation". In 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013232.
Texto completo da fonteGrant, Catherine E., Mark W. Bautz, Steven E. Kissel e Beverly LaMarr. "A charge-transfer-inefficiency correction model for the Chandra advanced-CCD imaging spectrometer". In SPIE Astronomical Telescopes + Instrumentation, editado por Andrew D. Holland. SPIE, 2004. http://dx.doi.org/10.1117/12.550628.
Texto completo da fonteSopczak, Andre, Salim Aoulmit, Khaled Bekhouche, Chris Bowdery, Craig Buttar, Chris Damerell, Dahmane Djendaoui et al. "Modeling of charge transfer inefficiency in a CCD with high-speed column parallel readout". In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774902.
Texto completo da fonteRelatórios de organizações sobre o assunto "Charge Transfert Inefficiency"
Norelli, John L., Moshe Flaishman, Herb Aldwinckle e David Gidoni. Regulated expression of site-specific DNA recombination for precision genetic engineering of apple. United States Department of Agriculture, março de 2005. http://dx.doi.org/10.32747/2005.7587214.bard.
Texto completo da fonte