Literatura científica selecionada sobre o tema "Cerebrovascular regulation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cerebrovascular regulation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cerebrovascular regulation"
Benyó, Zoltán, Éva Ruisanchez, Miriam Leszl-Ishiguro, Péter Sándor e Pál Pacher. "Endocannabinoids in cerebrovascular regulation". American Journal of Physiology-Heart and Circulatory Physiology 310, n.º 7 (1 de abril de 2016): H785—H801. http://dx.doi.org/10.1152/ajpheart.00571.2015.
Texto completo da fonteMiller, Stephanie. "NIRS-based cerebrovascular regulation assessment: exercise and cerebrovascular reactivity". Neurophotonics 4, n.º 04 (12 de setembro de 2017): 1. http://dx.doi.org/10.1117/1.nph.4.4.041503.
Texto completo da fonteYang, Yi, David Simpson, Bingren Hu, Jia Liu e Li Xiong. "Cerebrovascular Regulation in Neurological Disorders". BioMed Research International 2018 (8 de outubro de 2018): 1–2. http://dx.doi.org/10.1155/2018/8140545.
Texto completo da fonteEisenach, J. C., C. Tong, D. A. Stump e S. M. Block. "Vasopressin and fetal cerebrovascular regulation". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 263, n.º 2 (1 de agosto de 1992): R376—R381. http://dx.doi.org/10.1152/ajpregu.1992.263.2.r376.
Texto completo da fonteJafari, Behrouz. "Cerebrovascular Regulation and Sleep Apnea". Current Sleep Medicine Reports 4, n.º 3 (17 de julho de 2018): 196–201. http://dx.doi.org/10.1007/s40675-018-0123-6.
Texto completo da fonteDaffertshofer, M., e M. Hennerici. "Cerebrovascular regulation and vasoneuronal coupling". Journal of Clinical Ultrasound 23, n.º 2 (fevereiro de 1995): 125–38. http://dx.doi.org/10.1002/jcu.1870230207.
Texto completo da fonteCaldwell, Hannah G., Jay M. J. R. Carr, Jatinder S. Minhas, Erik R. Swenson e Philip N. Ainslie. "Acid–base balance and cerebrovascular regulation". Journal of Physiology 599, n.º 24 (26 de novembro de 2021): 5337–59. http://dx.doi.org/10.1113/jp281517.
Texto completo da fonteKoehler, Raymond C., Debebe Gebremedhin e David R. Harder. "Role of astrocytes in cerebrovascular regulation". Journal of Applied Physiology 100, n.º 1 (janeiro de 2006): 307–17. http://dx.doi.org/10.1152/japplphysiol.00938.2005.
Texto completo da fonteRaz, Limor. "Estrogen and cerebrovascular regulation in menopause". Molecular and Cellular Endocrinology 389, n.º 1-2 (maio de 2014): 22–30. http://dx.doi.org/10.1016/j.mce.2014.01.015.
Texto completo da fonteEdvinsson, L. "Cerebrovascular gene regulation in brain diseases". Journal of the Neurological Sciences 283, n.º 1-2 (agosto de 2009): 246. http://dx.doi.org/10.1016/j.jns.2009.02.032.
Texto completo da fonteTeses / dissertações sobre o assunto "Cerebrovascular regulation"
Hansen, Alexander Bradley. "Cerebrovascular and peripheral vascular regulation : role of oxidative stress". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63341.
Texto completo da fonteGraduate Studies, College of (Okanagan)
Graduate
Lowings, Michael D., e University of Lethbridge Faculty of Arts and Science. "Epigenetic regulation of stroke recovery : changes in DNA methylation and micro-RNA regulation following stroke and EGF/EPO neurogenesis therapy". Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Biological Sciences, c2010, 2010. http://hdl.handle.net/10133/2570.
Texto completo da fontex, [99] leaves : ill. (some col.) ; 29 cm
Allinger, Jérémie. "Etude des différents facteurs influençant la perte de cοnnaissance chez l'apnéïste". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR081.
Texto completo da fonteThe aim of this thesis was to study the factors influencing loss of consciousness in freedivers. Firstly, we studied the prevalence of accidents in competitive freediving as a function of the freediving discipline practised (study 1) and then attempted to establish whether there was a particularly high-risk profile for syncope among expert freedivers (study 2). Secondly, we analysed the cognitive impact of a series of maximal apneas in expert freedivers and after a regular freediving session in amateur freedivers (studies 3 and 4). In addition, particular attention was paid to the quantification and management of apnea training load in ecological situations (study 4). Finally, the haemodynamic and cerebral oxygenation responses of novice freedivers were compared during static and dynamic apneas (study 5). Syncope remains relatively frequent (3.31% of accidents), with a risk twice as high for disciplines without fins. Certain freedivers with the ability to perform long apneas tend to take more risks, particularly among experienced male competitors. This could be linked to repeated exposure to hypoxia, since we have shown that a series of maximal apneas directly affects cognitive functions, regardless of the level of training. However, in non-experts, a single apnea session in a non-competitive setting did not reveal any notable cognitive deficits, which suggests that these alterations probably depend on the intensity and frequency of apneas and therefore on the hypoxic dose. This hypoxic dose also seems to depend on the type of apnoea: static or dynamic. Thus, although static apnoea benefits from more effective compensatory mechanisms, dynamic apnoea, because of the increased muscular effort, induces more rapid hypoxia, putting the brain's protective mechanisms to a greater test. It therefore seems worthwhile to use tools to quantify the training load of freedivers in order to better assess the hypoxic dose induced and, ultimately, to limit the risks of syncope in order to prevent future cognitive impairment. This work paves the way for future research into adaptations to hypoxia induced by apnoea in sports and medical settings, while calling for better management of the risks associated with practice
Teixeira, Ana Sofia da Cunha. "Ageing affects the balance between central and peripheral mechanisms of cerebrovascular regulation with increasing influence of systolic blood pressure levels". Master's thesis, 2019. https://hdl.handle.net/10216/119825.
Texto completo da fonteTeixeira, Ana Sofia da Cunha. "Ageing affects the balance between central and peripheral mechanisms of cerebrovascular regulation with increasing influence of systolic blood pressure levels". Dissertação, 2019. https://hdl.handle.net/10216/119825.
Texto completo da fonteLivros sobre o assunto "Cerebrovascular regulation"
Mitagvariia, N. P. Cerebral blood flow regulation. New York: Nova Science Publishers, 2009.
Encontre o texto completo da fonte1924-, Wüllenweber R., Klinger M. 1943- e Brock M. 1938-, eds. Regulation of cerebral blood flow and metabolism ; Neurosurgical treatment of epilepsy ; Rehabilitation in neurosurgery. Berlin: Springer-Verlag, 1987.
Encontre o texto completo da fonteMcCulloch, James, e Lars Edvinsson. Peptidergic Mechanisms in the Cerebral Circulation. Wiley & Sons, Incorporated, John, 1987.
Encontre o texto completo da fonteWullenweber e Klinger. Regulation of Cerebral Blood Flow and Metabolism/Neurosurgical Treatment of Epilepsy/Rehabilitation in Neurosurgery (Deutsche Gesellschaft Fur Neurochirurgie // Proceedings of the Annual Congress). Springer-Verlag, 1987.
Encontre o texto completo da fonteCerebral Blood Flow in Acute Head Injury: The Regulation of Blood Flow and Metabolism During the Acute Phase of Head Injury, and Its Significance for (Acta Neurochirurgica Supplementum). Springer, 1991.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cerebrovascular regulation"
Dalkara, Turgay, e Michael A. Moskowitz. "Nitric Oxide and Cerebrovascular Regulation". In Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide, 189–94. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1903-4_23.
Texto completo da fonteDalkara, T., e M. A. Moskowitz. "Nitric Oxide in Cerebrovascular Regulation and Ischemia". In Monographs in Clinical Neuroscience, 28–45. Basel: KARGER, 1997. http://dx.doi.org/10.1159/000061570.
Texto completo da fonteDaley, Michael L., Nithya Narayanan, Charles W. Leffler e Per Kristian Eide. "Stroke with subarachnoid hemorrhage: assessment of cerebrovascular pressure regulation and simulated cerebrovascular resistance". In Acta Neurochirurgica Supplements, 321–25. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-85578-2_61.
Texto completo da fonteToda, Noboru, e Tomio Okamura. "Nerve-Derived Nitric Oxide (NO) in the Regulation of Cerebrovascular Function". In Molecular and Cellular Mechanisms of Cardiovascular Regulation, 211–18. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-65952-5_16.
Texto completo da fonteKatsuki, Hiroshi, e Kosei Matsumoto. "Nicotinic Acetylcholine Receptors in Regulation of Pathology of Cerebrovascular Disorders". In Nicotinic Acetylcholine Receptor Signaling in Neuroprotection, 113–36. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8488-1_7.
Texto completo da fonteMoore, Steven A., Elizabeth Yoder, Gretchen Rich, MacKenzie Hilfers e Jeffrey Albright. "Regulation of Cerebrovascular Cyclooxygenase-2 by Pro- and Anti-Inflammatory Cytokines". In Advances in Experimental Medicine and Biology, 125–29. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4793-8_19.
Texto completo da fonteMacfarlane, R., e M. A. Moskowitz. "The Innervation of Pial Blood Vessels and their Role in Cerebrovascular Regulation". In Brain Ischemia, 247–59. London: Springer London, 1995. http://dx.doi.org/10.1007/978-1-4471-2073-5_25.
Texto completo da fonteBenyó, Zoltán, Christoph Görlach e Michael Wahl. "Interaction between Nitric Oxide and Thromboxane A2 in the Regulation of the Resting Cerebrovascular Tone". In Advances in Experimental Medicine and Biology, 373–79. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4717-4_45.
Texto completo da fonteDaley, Michael L., C. W. Leffler, S. Jackson e I. Piper. "Use of Resistance-Area Product Derived from Doppler MCA Velocity to Estimate the Range of Active Cerebrovascular Regulation". In Intracranial Pressure and Brain Biochemical Monitoring, 155–57. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6738-0_40.
Texto completo da fonteSonntag, William E., Delrae M. Eckman, Jeremy Ingraham e David R. Riddle. "Regulation of Cerebrovascular Aging". In Brain Aging, 279–304. CRC Press, 2007. http://dx.doi.org/10.1201/9781420005523-12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cerebrovascular regulation"
Miller, S., I. Richmond, J. Borgos e K. Mitra. "NIRS-based noninvasive cerebrovascular regulation assessment". In SPIE BiOS, editado por Steen J. Madsen, Victor X. D. Yang, E. Duco Jansen, Qingming Luo, Samarendra K. Mohanty e Nitish V. Thakor. SPIE, 2016. http://dx.doi.org/10.1117/12.2213951.
Texto completo da fonte"Analysis of methylation of antioxydant-related genes in patiens with common cardio- and cerebrovascular diseases". In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-261.
Texto completo da fonteOlufsen, Mette S., Lewis A. Lipsitz e Ali Nadim. "A Lumped Parameter Model for Cerebral Blood Flow Regulation". In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23138.
Texto completo da fonteThunemann, Martin, Kivilcim Kilic, Michele Desjardins, Qun Cheng, Kimberly L. Weldy, Payam A. Saisan, Anders M. Dale e Anna Devor. "Implementation of Deep 2-Photon Microscopy and Optogenetics to Dissect Cell-Type-Specific Mechanisms of Cerebrovascular Regulation". In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/boda.2017.jtu4a.15.
Texto completo da fonteRakymzhan, Adiya, e Alberto Vazquez. "The Contribution of Cortical Neuronal Populations to Resting-State Cerebrovascular Regulation Revealed by Two-Photon Microscopy Imaging". In Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/brain.2023.btu1b.2.
Texto completo da fonteMalykhina, Galina, Vyacheslav Salnikov, Vladimir Semenyutin e Dmitriy Tarkhov. "Digitalization of medical services for detecting violations of cerebrovascular regulation based on a neural network signal analysis algorithm". In SPBPU IDE '20: SPBPU IDE-2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3444465.3444526.
Texto completo da fonte"Molecular mechanisms of cardio- and cerebrovascular comorbidity: from experimental analysis of structural and epigenetic variations in the human genome to post-GWAS analysis of genetic correlations between diseases". In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-223.
Texto completo da fonte