Artigos de revistas sobre o tema "Ceramic electrolytes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ceramic electrolytes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kee, Robert J., Huayang Zhu, Sandrine Ricote e Greg Jackson. "(Invited) Mixed Conduction in Ceramic Electrolytes For Intermediate-Temperature Fuel Cells and Electrolyzers". ECS Meeting Abstracts MA2023-02, n.º 46 (22 de dezembro de 2023): 2216. http://dx.doi.org/10.1149/ma2023-02462216mtgabs.
Texto completo da fonteHe, Binlang, Shenglin Kang, Xuetong Zhao, Jiexin Zhang, Xilin Wang, Yang Yang, Lijun Yang e Ruijin Liao. "Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes". Molecules 27, n.º 19 (10 de outubro de 2022): 6756. http://dx.doi.org/10.3390/molecules27196756.
Texto completo da fonteTronstad, Zachary, e Bryan D. McCloskey. "Ion Conductive High Li+ Transference Number Polymer Composites for Solid-State Batteries". ECS Meeting Abstracts MA2024-01, n.º 5 (9 de agosto de 2024): 751. http://dx.doi.org/10.1149/ma2024-015751mtgabs.
Texto completo da fonteLee, Jong-Ho, Junseok Kim, Sihyuk Choi, HO-IL JI, Deok-Hwang Kwon, Sungeun Yang, Kyung Joong Yoon e Ji-Won Son. "Enhanced Sintering of Refractory Protonic Ceramic Electrolyte by Dual Phase Reaction". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3380. https://doi.org/10.1149/ma2024-02483380mtgabs.
Texto completo da fonteLuo, Jiajia, Yang Zhong e Guohua Chen. "Preparation, Microstructure and Electrical Conductivity of LATP/LB Glass Ceramic Solid Electrolytes". Journal of Physics: Conference Series 2101, n.º 1 (1 de novembro de 2021): 012081. http://dx.doi.org/10.1088/1742-6596/2101/1/012081.
Texto completo da fonteFincher, Cole D., Colin Gilgenbach, Christian Roach, Rachel Osmundsen, Brian W. Sheldon, W. Craig Carter, James LeBeau e Yet-Ming Chiang. "Electrochemical Embrittlement Accelerates Dendrite Growth in Ceramic Electrolytes". ECS Meeting Abstracts MA2024-01, n.º 38 (9 de agosto de 2024): 2300. http://dx.doi.org/10.1149/ma2024-01382300mtgabs.
Texto completo da fonteChen, Xi. "(Invited) Ion Transport and Interface Resistance in Polymer-Based Composite Electrolytes and Composite Cathode". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 983. http://dx.doi.org/10.1149/ma2023-016983mtgabs.
Texto completo da fonteThangadurai, Venkataraman. "(Invited) Garnet Solid Electrolytes for Advanced All-Solid-State Li Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 47 (9 de outubro de 2022): 1759. http://dx.doi.org/10.1149/ma2022-02471759mtgabs.
Texto completo da fonteSahore, Ritu, Beth L. Armstrong, Changhao Liu e Xi Chen. "A Three-Dimensionally Interconnected Composite Polymer Electrolyte for Solid-State Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 378. http://dx.doi.org/10.1149/ma2022-024378mtgabs.
Texto completo da fonteRanque, Pierre, Jakub Zagórski, Grazia Accardo, Ander Orue Mendizabal, Juan Miguel López del Amo, Nicola Boaretto, Maria Martinez-Ibañez et al. "Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO". Inorganics 10, n.º 6 (13 de junho de 2022): 81. http://dx.doi.org/10.3390/inorganics10060081.
Texto completo da fonteThangadurai, Venkataraman. "(Invited) Lithium – Sulfur Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 545. http://dx.doi.org/10.1149/ma2022-024545mtgabs.
Texto completo da fonteKirchberger, Anna Maria, Patrick Walke e Tom Nilges. "Effect of Nanostructured Inorganic Ceramic Filler on Poly(ethylene oxide)-Based Solid Polymer Electrolytes". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 991. http://dx.doi.org/10.1149/ma2023-016991mtgabs.
Texto completo da fonteZhao, Hui, Zhen Liu e Zhong Han. "A Comparison on Ceramic Coating Formed on AM50 Alloy by Micro-Arc Oxidation in Two Electrolytes". Materials Science Forum 546-549 (maio de 2007): 575–78. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.575.
Texto completo da fonteMéry, Adrien, Steeve Rousselot, David Lepage, David Aymé-Perrot e Mickael Dollé. "Limiting Factors Affecting the Ionic Conductivities of LATP/Polymer Hybrid Electrolytes". Batteries 9, n.º 2 (28 de janeiro de 2023): 87. http://dx.doi.org/10.3390/batteries9020087.
Texto completo da fonteAthanasiou, Christos E., Xing Liu, Huajian Gao e Brian W. Sheldon. "Inelastic Deformation Mechanisms in Ceramic and Glass Electrolytes & Dendrites". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 976. http://dx.doi.org/10.1149/ma2023-016976mtgabs.
Texto completo da fonteCarmona, Eric A., e Paul Albertus. "Solid-State Electrolyte Fracture in Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 396. http://dx.doi.org/10.1149/ma2022-024396mtgabs.
Texto completo da fonteChen, X. Chelsea, Yiman Zhang, Laura C. Merrill, Charles Soulen, Michelle L. Lehmann, Jennifer L. Schaefer, Zhijia Du, Tomonori Saito e Nancy J. Dudney. "Gel composite electrolyte – an effective way to utilize ceramic fillers in lithium batteries". Journal of Materials Chemistry A 9, n.º 10 (2021): 6555–66. http://dx.doi.org/10.1039/d1ta00180a.
Texto completo da fonteFu, Wen, Li Wang e Li Chen. "The Discharge Characteristics of PEO Films in K2ZrF6 with H3PO4 Electrolyte". Advanced Materials Research 461 (fevereiro de 2012): 277–80. http://dx.doi.org/10.4028/www.scientific.net/amr.461.277.
Texto completo da fonteFu, Wen, Li Wang e Li Chen. "The Discharge Characteristics of PEO Films in K2ZrF6 with NaH2PO4 Electrolyte". Advanced Materials Research 577 (outubro de 2012): 115–18. http://dx.doi.org/10.4028/www.scientific.net/amr.577.115.
Texto completo da fonteKim, Hyun Woo. "Scalable and Flexible Li-Ion Conducting Film Using a Sacrificial Template for High-Voltage All-Solid-State Batteries". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1096. https://doi.org/10.1149/ma2024-0281096mtgabs.
Texto completo da fonteMu, Xiaowei, Anyang Wang e Nianqiang Wu. "Plasma Modification of Interfaces in Ceramic Nanofiber–Polymer Electrolytes for Lithium Metal Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 987. http://dx.doi.org/10.1149/ma2023-016987mtgabs.
Texto completo da fonteWu, Shi Kui, e Li Wang. "The Plasma Electrolytic Oxidation Process in K2ZrF6 with Na2HPO4 Electrolyte". Advanced Materials Research 602-604 (dezembro de 2012): 1387–90. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.1387.
Texto completo da fonteWang, Wanhua, Wei Wu, Zeyu Zhao, Hanping Ding, Fanglin (Frank) (Frank) Chen e Dong Ding. "New Observations on Material Processing and Investigation on Long Term Stability for Proton Conducting Solid Oxide Electrolysis Cells (P-SOEC)". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3335. https://doi.org/10.1149/ma2024-02483335mtgabs.
Texto completo da fonteGoodenough, J. "Ceramic solid electrolytes". Solid State Ionics 94, n.º 1-4 (1 de fevereiro de 1997): 17–25. http://dx.doi.org/10.1016/s0167-2738(96)00501-2.
Texto completo da fonteMonajjemi, Majid, e Fatemeh Mollaamin. "Development of Solid-State Lithium-Ion Batteries (LIBs) to Increase Ionic Conductivity through Interactions between Solid Electrolytes and Anode and Cathode Electrodes". Energies 17, n.º 18 (10 de setembro de 2024): 4530. http://dx.doi.org/10.3390/en17184530.
Texto completo da fonteWalkowiak, Mariusz, Monika Osińska, Teofil Jesionowski e Katarzyna Siwińska-Stefańska. "Synthesis and characterization of a new hybrid TiO2/SiO2 filler for lithium conducting gel electrolytes". Open Chemistry 8, n.º 6 (1 de dezembro de 2010): 1311–17. http://dx.doi.org/10.2478/s11532-010-0110-3.
Texto completo da fonteSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning et al. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, n.º 5 (26 de abril de 2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Texto completo da fonteSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning et al. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, n.º 5 (26 de abril de 2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Texto completo da fonteDunyushkina, Liliya A. "Field-assisted sintering of refractory oxygen-ion and proton conducting ceramics". Electrochemical Materials and Technologies 3, n.º 3 (Special Issue) (2024): 20243040. http://dx.doi.org/10.15826/elmattech.2024.3.040.
Texto completo da fonteLee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim e Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries". Journal of Nanoscience and Nanotechnology 20, n.º 7 (1 de julho de 2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.
Texto completo da fonteDai, Baoxin, Man Zhou, Kaige Liu, Bin He, Bingxi Xiang e Lingbing Kong. "The molding of the ceramic solid electrolyte sheet prepared by tape casting". Journal of Physics: Conference Series 2566, n.º 1 (1 de agosto de 2023): 012102. http://dx.doi.org/10.1088/1742-6596/2566/1/012102.
Texto completo da fonteChometon, Ronan, Marc Dechamps, Jean-Marie Tarascon e Christel Laberty-Robert. "Meaningful Metrics for an Efficient Solvent-Free Formulation of Polymer – Argyrodite Hybrid Solid Electrolyte". ECS Meeting Abstracts MA2023-02, n.º 6 (22 de dezembro de 2023): 929. http://dx.doi.org/10.1149/ma2023-026929mtgabs.
Texto completo da fonteGuo, Ping Yi, Ning Wang e Peng Fan. "Effect of the Electrolytic Solution Composition on Properties of Ceramic Coatings on Ti Produced by PEO". Applied Mechanics and Materials 174-177 (maio de 2012): 596–99. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.596.
Texto completo da fonteZaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade e Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries". Journal of Materials Chemistry A 7, n.º 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.
Texto completo da fonteKirkgeçit, Rabia, e Handan Torun. "Synthesis and characterization of CeLaMO2 (M: Sm, Gd, Dy) compounds for solid ceramic electrolytes". Processing and Application of Ceramics 14, n.º 4 (2020): 314–20. http://dx.doi.org/10.2298/pac2004314k.
Texto completo da fonteKirkgeçit, Rabia, e Handan Torun. "Synthesis and characterization of CeLaMO2 (M: Sm, Gd, Dy) compounds for solid ceramic electrolytes". Processing and Application of Ceramics 14, n.º 4 (2020): 314–20. http://dx.doi.org/10.2298/pac2004314k.
Texto completo da fonteLee, Young Joo, Dokyung KIM, Yoonju Shin, Hyun Woo Kim, Ji-Hoon Han, Sangdoo Ahn e Young Whan Cho. "Conduction Mechanism Study of Argyrodite-Type and Polymer-Ceramic Composite Electrolyte By Solid-State and PFG NMR Spectroscopy". ECS Meeting Abstracts MA2024-02, n.º 4 (22 de novembro de 2024): 416. https://doi.org/10.1149/ma2024-024416mtgabs.
Texto completo da fonteHuang, Hong, Jeremy Lee e Michael Rottmayer. "Thermal, Mechanical, and Electrical Characteristics of the Lithiated PEO/LAGP Composite Electrolytes". ECS Meeting Abstracts MA2022-01, n.º 2 (7 de julho de 2022): 311. http://dx.doi.org/10.1149/ma2022-012311mtgabs.
Texto completo da fonteGomes, Luisa Larissa Arnaldo, Sanjeev Mukerjee, Derrick Maxwell e Kevin Yang. "Development of PCL-Based Gel Polymer Electrolyte for Li-Sulfur Batteries". ECS Meeting Abstracts MA2023-01, n.º 4 (28 de agosto de 2023): 866. http://dx.doi.org/10.1149/ma2023-014866mtgabs.
Texto completo da fonteWu, Nianqiang, e Hui Yang. "(Invited) Engineering Interfaces in Solid-State Polymer-Ceramic Composite Electrolytes of Li-Ion Batteries". ECS Meeting Abstracts MA2022-01, n.º 38 (7 de julho de 2022): 1657. http://dx.doi.org/10.1149/ma2022-01381657mtgabs.
Texto completo da fonteBoyano, Iker, Aroa R. Mainar, J. Alberto Blázquez, Andriy Kvasha, Miguel Bengoechea, Iratxe de Meatza, Susana García-Martín, Alejandro Varez, Jesus Sanz e Flaviano García-Alvarado. "Reduction of Grain Boundary Resistance of La0.5Li0.5TiO3 by the Addition of Organic Polymers". Nanomaterials 11, n.º 1 (29 de dezembro de 2020): 61. http://dx.doi.org/10.3390/nano11010061.
Texto completo da fonteBai, Peng. "(Invited) Critical Electrochemical Limits before Dendrite Penetration in Li-Ion-Conducting Electrolytes". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 968. http://dx.doi.org/10.1149/ma2023-016968mtgabs.
Texto completo da fonteCarda, Michal, Nela Adamová, Daniel Budáč, Martin Paidar e Karel Bouzek. "Preparation Protocol and Properties of YSZ Ceramic Electrolytes for Solid Oxide Cells". ECS Transactions 105, n.º 1 (30 de novembro de 2021): 97–105. http://dx.doi.org/10.1149/10501.0097ecst.
Texto completo da fonteBertrand, Marc, Steeve Rousselot, David Aymé-Perrot e Mickaël Dollé. "Assembling an All-Solid-State Ceramic Battery: Assessment of Chemical and Thermal Compatibility of Solid Ceramic Electrolytes and Active Material Using High Temperature X-Ray Diffraction". ECS Meeting Abstracts MA2022-02, n.º 7 (9 de outubro de 2022): 2421. http://dx.doi.org/10.1149/ma2022-0272421mtgabs.
Texto completo da fonteBROWN, IAN, MARK BOWDEN, TIM KEMMITT, JEREMY WU e JULES CARVALHO. "NANOSTRUCTURED ALUMINA CERAMIC MEMBRANES FOR GAS SEPARATION". International Journal of Modern Physics B 23, n.º 06n07 (20 de março de 2009): 1015–20. http://dx.doi.org/10.1142/s0217979209060397.
Texto completo da fonteKumar, Binod, e Lawrence G. Scanlon. "Polymer-ceramic composite electrolytes". Journal of Power Sources 52, n.º 2 (dezembro de 1994): 261–68. http://dx.doi.org/10.1016/0378-7753(94)02147-3.
Texto completo da fonteReddy Polu, Anji, e Ranveer Kumar. "Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes". E-Journal of Chemistry 8, n.º 1 (2011): 347–53. http://dx.doi.org/10.1155/2011/628790.
Texto completo da fonteRakhadilov, B. K., D. R. Baizhan, Zh B. Sagdoldina e K. Torebek. "Research of regimes of applying coats by the method of plasma electrolytic oxidation on Ti-6Al-4V". Bulletin of the Karaganda University. "Physics" Series 105, n.º 1 (30 de março de 2022): 99–106. http://dx.doi.org/10.31489/2022ph1/99-106.
Texto completo da fonteLiao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng e Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.
Texto completo da fonteKotobuki, Masashi. "Recent progress of ceramic electrolytes for post Li and Na batteries". Functional Materials Letters 14, n.º 03 (18 de fevereiro de 2021): 2130003. http://dx.doi.org/10.1142/s1793604721300036.
Texto completo da fonte