Literatura científica selecionada sobre o tema "Cementious materials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cementious materials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cementious materials"
Uma Maheshwari, K., e N. Venkat Rao. "Effect of Cementious Materials on Corrsion in Carbonated Concrete". IOP Conference Series: Earth and Environmental Science 1086, n.º 1 (1 de setembro de 2022): 012003. http://dx.doi.org/10.1088/1755-1315/1086/1/012003.
Texto completo da fonteXie, Guo Hua, He Qing Du, Shu Jing Zhu e Yong Jie Xue. "Novel Cementious Materials from Industrial Solid Waste for Silt Soil Solidification". Advanced Materials Research 150-151 (outubro de 2010): 711–18. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.711.
Texto completo da fonteWang, Kang, Yu Ping Zhang, Ting Wei Cao, Jie Zhang e Zhong He Shui. "Effect of Modified Metakaolin on Water Content of Hardened Cementitious Materials of Concrete". Key Engineering Materials 599 (fevereiro de 2014): 29–33. http://dx.doi.org/10.4028/www.scientific.net/kem.599.29.
Texto completo da fonteNiu, Hui, Kai Yang, Ke Bin Zhao e Huan Zheng Chi. "Experimental Study on Improving the early Strength of Fly Ash Concrete". Advanced Materials Research 168-170 (dezembro de 2010): 1943–46. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.1943.
Texto completo da fonteSharkawi, Aladdin M., Metwally A. Abd-Elaty e Omar H. Khalifa. "Synergistic influence of micro-nano silica mixture on durability performance of cementious materials". Construction and Building Materials 164 (março de 2018): 579–88. http://dx.doi.org/10.1016/j.conbuildmat.2018.01.013.
Texto completo da fonteFUKUSHIMA, Yuta, Takayasu ITO, Masashi OSAKI e Tsuyoshi SAITO. "APPLICATION OF CALCINED CLAY CONTAINING ALLOPHANE AND HALLOYSITE AS A SUPPLYMENTARY CEMENTIOUS MATERIALS". Cement Science and Concrete Technology 77, n.º 1 (29 de março de 2024): 550–57. http://dx.doi.org/10.14250/cement.77.550.
Texto completo da fonteWang, Xue, e Yuan Chen Guo. "A Summary of Strength Formation Mechanism of Light Wall Material". Applied Mechanics and Materials 217-219 (novembro de 2012): 1099–102. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1099.
Texto completo da fonteWang, Xue, e Yuan Chen Guo. "Experimental Research on Strengthen Mechanism of NaOH on Light Wall Materials Prepared from Crushed Brick Powder". Advanced Materials Research 535-537 (junho de 2012): 1657–60. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1657.
Texto completo da fonteShe, An Ming, Wu Yao e Wan Cheng Yuan. "Evolution of Various States of Water in Blended Cementitious Materials". Applied Mechanics and Materials 193-194 (agosto de 2012): 389–92. http://dx.doi.org/10.4028/www.scientific.net/amm.193-194.389.
Texto completo da fonteLi, Xiong Hao, Yong Jie Xue e Min Zhou. "Experimental Study on Utilization FGD Byproducts in Building Bricks". Advanced Materials Research 150-151 (outubro de 2010): 753–57. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.753.
Texto completo da fonteTeses / dissertações sobre o assunto "Cementious materials"
Danché, Valentine. "Impression 3D par liaison sélective de béton de chanvre". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1286.
Texto completo da fonte3D printing is experiencing a significant rise in the construction industry, paving the way for the expected digitalization of the sector. As new techniques are explored to combine technical optimization and CO2 emission reduction, this study focuses on powder-bed 3D printing. Despite still being relatively niche, this method could facilitate printing with a high natural fiber content, thus taking a further step towards carbon neutrality. The process is simple, involving three iterative steps : depositing a layer of reactive powder, compacting it, and then injecting water onto the surface.Hence, controlling water penetration into the powder is crucial to improve print quality. The objective is to confine the available water to the desired area, ensuring optimal binder hydration and preventing leaching from previous layers. Several factors may limit penetration depth, including the physical properties of the powder (compactness, permeability) and those of the injected fluid (surface tension, viscosity, yield stress) to study their impact on the kinetics of water propagation on the surface and within the powder. Consequently, we examined the vertical water propagation kinetics in compacted cementitious powder samples. To better simulate the phenomena occurring within the printer, vertical imbibition in both penetration directions was monitored through image analysis and MRI, providing additional insights into the quantity and distribution of water in the samples.Following the development of a versatile setup, we investigated pure powders (such as cement, calcite, metakaolin, sand) and those containing porous aggregates (recycled cement paste or micronized hemp shives) to better understand their impact on water penetration in a bio-sourced printable powder. Indeed, this technique sheds new light with a saturation sensibility and, when combined with MRI, water transfers between the matrix and porous aggregates. Natural porous aggregates like hemp are well-known to affect water distribution as they absorb and swell on contact with water. The results indicate that kinetics do not always slow down over time which opens discussions on the validity of Washburn's Law, commonly used to describe water propagation phenomena in porous media.Finally, the complete development of a powder-bed 3D printer has enabled the printing of cubes, which will facilitate the study of the influence of printing parameter choices (injection type and compactness) on part geometry. We will then be able to consider biobased materials as a possible tool for improving printing precision
Houk, Alexander Nicholas. "SELF-SENSING CEMENTITIOUS MATERIALS". UKnowledge, 2017. https://uknowledge.uky.edu/ce_etds/58.
Texto completo da fonteIsaacs, Ben. "Self-healing cementitious materials". Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/54220/.
Texto completo da fontePheeraphan, Thanakorn. "Microwave curing of cementitious materials". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12174.
Texto completo da fontePeach, Benjamin. "Laser scabbling of cementitious materials". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11853/.
Texto completo da fonteBrown, Nicholas John. "Discrete element modelling of cementitious materials". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8011.
Texto completo da fonteRad, Taghi. "Microstructural characteristics of recycled cementitious materials". Thesis, University of Hertfordshire, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340038.
Texto completo da fonteBolton, Mark William. "Soil Improvement Using Optimised Cementitous Materilas Design". Thesis, Griffith University, 2014. http://hdl.handle.net/10072/365243.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Mihai, Iulia. "Micromechanical constitutive models for cementitious composite materials". Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/24624/.
Texto completo da fonteValori, Andrea. "Characterisation of cementitious materials by 1H NMR". Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510562.
Texto completo da fonteLivros sobre o assunto "Cementious materials"
Pöllmann, Herbert, ed. Cementitious Materials. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728.
Texto completo da fonteMalhotra, V. M. Pozzolanic and cementitious materials. Amsterdam, The Netherlands: Gordon and Breach, 1996.
Encontre o texto completo da fonteDeHayes, SM, e D. Stark, eds. Petrography of Cementitious Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1994. http://dx.doi.org/10.1520/stp1215-eb.
Texto completo da fonte1953-, DeHayes Sharon M., Stark D e Symposium on the Petrography of Cementitious Materials (1993 : Atlanta, Ga.), eds. Petrography of cementitious materials. Philadelphia, PA: ASTM, 1994.
Encontre o texto completo da fonteConference on Advances in Cementitious Materials (1990 Gaithersburg, Md.). Advances in cementitious materials. Westerville, Ohio: American Ceramic Society, 1991.
Encontre o texto completo da fonteSoltesz, Steven M. Cementitious materials for thin patches. Salem, OR: Oregon Dept. of Transportation, Research Group, 2001.
Encontre o texto completo da fontePijaudier-Cabot, Gilles. Damage mechanics of cementitious materials. London: ISTE, 2012.
Encontre o texto completo da fonte1946-, Mai Y. W., ed. Fracture mechanics of cementitious materials. London: Blackie Academic & Professional, 1996.
Encontre o texto completo da fonteRahman, Rehab O. Abdel, Ravil Z. Rakhimov, Nailia R. Rakhimova e Michael I. Ojovan. Cementitious Materials for Nuclear Waste Immobilization. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118511992.
Texto completo da fonteDe Schutter, Geert, e Karel Lesage. Active Rheology Control of Cementitious Materials. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003289463.
Texto completo da fonteCapítulos de livros sobre o assunto "Cementious materials"
Gdoutos, Emmanuel E. "Cementitious Materials". In Fracture Mechanics, 387–401. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_14.
Texto completo da fonteDe la Torre, Ángeles G., Isabel Santacruz, Laura León-Reina, Ana Cuesta e Miguel A. G. Aranda. "1. Diffraction and crystallography applied to anhydrous cements". In Cementitious Materials, editado por Herbert Pöllmann, 3–30. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-002.
Texto completo da fonteAranda, Miguel A. G., Ana Cuesta, A. G. De la Torre, Isabel Santacruz e Laura León-Reina. "2. Diffraction and crystallography applied to hydrating cements". In Cementitious Materials, editado por Herbert Pöllmann, 31–60. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-003.
Texto completo da fonteRaab, Bastian, e Herbert Pöllmann. "3. Synthesis of highly reactive pure cement phases". In Cementitious Materials, editado por Herbert Pöllmann, 61–102. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-004.
Texto completo da fonteLothenbach, Barbara, e Frank Winnefeld. "4. Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements". In Cementitious Materials, editado por Herbert Pöllmann, 103–44. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-005.
Texto completo da fonteArtioli, G., M. Secco, A. Addis e M. Bellotto. "5. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating". In Cementitious Materials, editado por Herbert Pöllmann, 147–58. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-006.
Texto completo da fonteKaden, R., e H. Poellmann. "6. Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts". In Cementitious Materials, editado por Herbert Pöllmann, 159–90. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-007.
Texto completo da fonteStöber, S., e H. Pöllmann. "7. Crystallography and crystal chemistry of AFm phases related to cement chemistry". In Cementitious Materials, editado por Herbert Pöllmann, 191–250. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-008.
Texto completo da fonteGao, X., B. Yuan, Q. L. Yu e H. J. H. Brouwers. "8. Chemistry, design and application of hybrid alkali activated binders". In Cementitious Materials, editado por Herbert Pöllmann, 253–84. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-009.
Texto completo da fontePritzel, Christian, Torsten Kowald, Yilmaz Sakalli e Reinhard Trettin. "9. Binding materials based on calcium sulphates". In Cementitious Materials, editado por Herbert Pöllmann, 285–310. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-010.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cementious materials"
Tamura, Masaki, e Yumi Ohiwa. "Use-Stage Environmental Performances of Cementious-Woodchip Compound Products Considering Resilience Measures in Disaster Situation". In Fourth International Conference on Sustainable Construction Materials and Technologies. Coventry University, 2016. http://dx.doi.org/10.18552/2016/scmt4s172.
Texto completo da fonteHegyi, Andreea. "THE EFFECT OF TIO2 ON THE PROPERTIES OF CEMENTIOUS COMPOSITE MATERIALS �THE CURRENT STATE-OF-THE ART". In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/6.3/s26.051.
Texto completo da fonteZhang, Emma Qingnan, Luping Tang e Thomas Zack. "Carbon Fiber as Anode Material for Cathodic Prevention in Cementitious Materials". In International Conference on the Durability of Concrete Structures. Purdue University Press, 2016. http://dx.doi.org/10.5703/1288284316149.
Texto completo da fonteGarcía-González, J., P. Lemos, A. Pereira, J. Pozo, M. Guerra-Romero, A. Juan-Valdés e P. Faria. "Biodegradable Polymers on Cementitious Materials". In XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.017.
Texto completo da fonte"Supplementary Cementitious Materials for Sustainability". In SP-269: Concrete: The Sustainable Material Choice. American Concrete Institute, 2010. http://dx.doi.org/10.14359/51663719.
Texto completo da fonte"Influence of Supplementary Cementitious Materials on the Autogenous Self-Healing of Cracks in Cementitious Materials". In SP-320:10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete. American Concrete Institute, 2017. http://dx.doi.org/10.14359/51701050.
Texto completo da fonteCoulbeck, Teig S. V., Isaac P. G. Hammond, Christopher J. Gooding, James K. Wither, Iasmi Sterianou, Dimitra Soulioti e Evangelos Z. Kordatos. "Development of self-sensing cementitious materials". In Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, editado por Kerrie Gath e Norbert G. Meyendorf. SPIE, 2020. http://dx.doi.org/10.1117/12.2558875.
Texto completo da fonte"Alternative Cementitious Materials: Challenges And Opportunities". In SP-305: Durability and Sustainability of Concrete Structures. American Concrete Institute, 2015. http://dx.doi.org/10.14359/51688587.
Texto completo da fonteNěmeček, J., J. Němečková e J. Němeček. "Micro-Scale Creep of Cementitious Materials". In Engineering Mechanics 2024. Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, 2024. http://dx.doi.org/10.21495/em2024-214.
Texto completo da fonteRam, Prashant, Kurt Smith, Ayesha Shah, Jan Olek e Myungook Kang. "Performance of Non-Cementitious Repair Materials for Concrete Pavement Partial-Depth Repairs in Wisconsin". In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/plpdwoy3.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cementious materials"
Wijaya, Ignasius P. A., Eric Kreiger e Asuf Masud. An elastic-inelastic model and embedded bounce-back control for layered printing with cementitious materials. Engineer Research and Development Center (U.S.), janeiro de 2024. http://dx.doi.org/10.21079/11681/48091.
Texto completo da fonteGroeneveld, Andrew, e C. Crane. Advanced cementitious materials for blast protection. Engineer Research and Development Center (U.S.), abril de 2023. http://dx.doi.org/10.21079/11681/46893.
Texto completo da fonteUcak-Astarlioglu, Mine, Jedadiah Burroughs, Charles Weiss, Kyle Klaus, Stephen Murrell, Samuel Craig, Jameson Shannon, Robert Moser, Kevin Wyss e James Tour. Graphene in cementitious materials. Engineer Research and Development Center (U.S.), dezembro de 2023. http://dx.doi.org/10.21079/11681/48033.
Texto completo da fonteSugama, T., e T. ,. Lance Brothers, Bour, D. Butcher. Self-degradable Cementitious Sealing Materials. Office of Scientific and Technical Information (OSTI), outubro de 2010. http://dx.doi.org/10.2172/993804.
Texto completo da fonteThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing e Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), novembro de 2020. http://dx.doi.org/10.21079/11681/38721.
Texto completo da fonteOlek, Jan, e Chaitanya Paleti. Compatibility of Cementitious Materials and Admixtures. Purdue University, dezembro de 2012. http://dx.doi.org/10.5703/1288284315025.
Texto completo da fonteRoesler, Jeffery, Sachindra Dahal, Dan Zollinger e W. Jason Weiss. Summary Findings of Re-engineered Continuously Reinforced Concrete Pavement: Volume 1. Illinois Center for Transportation, maio de 2021. http://dx.doi.org/10.36501/0197-9191/21-011.
Texto completo da fonteFlach, G. P. Degradation of Saltstone Disposal Unit Cementitious Materials. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1513682.
Texto completo da fonteChandler, Mei, William Lawrimore, Micael Edwards, Robert Moser, Jameson Shannon e James O'Daniel. Mesoscale modeling of cementitious materials : phase I. Engineer Research and Development Center (U.S.), junho de 2019. http://dx.doi.org/10.21079/11681/32980.
Texto completo da fonteLomboy, Gilson, Douglas Cleary, Seth Wagner, Yusef Mehta, Danielle Kennedy, Benjamin Watts, Peter Bly e Jared Oren. Long-term performance of sustainable pavements using ternary blended concrete with recycled aggregates. Engineer Research and Development Center (U.S.), maio de 2021. http://dx.doi.org/10.21079/11681/40780.
Texto completo da fonte