Literatura científica selecionada sobre o tema "Cellulose – Microbiology"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cellulose – Microbiology".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cellulose – Microbiology"
Gaudin, Christian, Anne Belaich, Stéphanie Champ e Jean-Pierre Belaich. "CelE, a Multidomain Cellulase fromClostridium cellulolyticum: a Key Enzyme in the Cellulosome?" Journal of Bacteriology 182, n.º 7 (1 de abril de 2000): 1910–15. http://dx.doi.org/10.1128/jb.182.7.1910-1915.2000.
Texto completo da fonteKrauss, Jan, Vladimir V. Zverlov e Wolfgang H. Schwarz. "In VitroReconstitution of the Complete Clostridium thermocellum Cellulosome and Synergistic Activity on Crystalline Cellulose". Applied and Environmental Microbiology 78, n.º 12 (20 de abril de 2012): 4301–7. http://dx.doi.org/10.1128/aem.07959-11.
Texto completo da fonteHetzler, Stephan, Daniel Bröker e Alexander Steinbüchel. "Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains". Applied and Environmental Microbiology 79, n.º 17 (21 de junho de 2013): 5159–66. http://dx.doi.org/10.1128/aem.01214-13.
Texto completo da fonteLynd, Lee R., Paul J. Weimer, Willem H. van Zyl e Isak S. Pretorius. "Microbial Cellulose Utilization: Fundamentals and Biotechnology". Microbiology and Molecular Biology Reviews 66, n.º 3 (setembro de 2002): 506–77. http://dx.doi.org/10.1128/mmbr.66.3.506-577.2002.
Texto completo da fonteCaspi, Jonathan, Yoav Barak, Rachel Haimovitz, Diana Irwin, Raphael Lamed, David B. Wilson e Edward A. Bayer. "Effect of Linker Length and Dockerin Position on Conversion of a Thermobifida fusca Endoglucanase to the Cellulosomal Mode". Applied and Environmental Microbiology 75, n.º 23 (9 de outubro de 2009): 7335–42. http://dx.doi.org/10.1128/aem.01241-09.
Texto completo da fonteKudanga, T., e E. Mwenje. "Extracellular cellulase production by tropical isolates of Aureobasidium pullulans". Canadian Journal of Microbiology 51, n.º 9 (1 de setembro de 2005): 773–76. http://dx.doi.org/10.1139/w05-053.
Texto completo da fonteWang, Hongliang, Fabio Squina, Fernando Segato, Andrew Mort, David Lee, Kirk Pappan e Rolf Prade. "High-Temperature Enzymatic Breakdown of Cellulose". Applied and Environmental Microbiology 77, n.º 15 (17 de junho de 2011): 5199–206. http://dx.doi.org/10.1128/aem.00199-11.
Texto completo da fonteZhou, Qingxin, Jintao Xu, Yanbo Kou, Xinxing Lv, Xi Zhang, Guolei Zhao, Weixin Zhang, Guanjun Chen e Weifeng Liu. "Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose". Eukaryotic Cell 11, n.º 11 (21 de setembro de 2012): 1371–81. http://dx.doi.org/10.1128/ec.00170-12.
Texto completo da fonteLiu, Wenjin, Xiao-Zhou Zhang, Zuoming Zhang e Y. H. Percival Zhang. "Engineering of Clostridium phytofermentans Endoglucanase Cel5A for Improved Thermostability". Applied and Environmental Microbiology 76, n.º 14 (28 de maio de 2010): 4914–17. http://dx.doi.org/10.1128/aem.00958-10.
Texto completo da fonteMurashima, Koichiro, Akihiko Kosugi e Roy H. Doi. "Synergistic Effects on Crystalline Cellulose Degradation between Cellulosomal Cellulases from Clostridium cellulovorans". Journal of Bacteriology 184, n.º 18 (15 de setembro de 2002): 5088–95. http://dx.doi.org/10.1128/jb.184.18.5088-5095.2002.
Texto completo da fonteTeses / dissertações sobre o assunto "Cellulose – Microbiology"
Du, Plessis Lisa. "Co-expression of cellulase genes in Saccharomyces cerevisiae for cellulose degradation". Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1818.
Texto completo da fontePorter, Suzanne L. "Evidence of multiple cellulase forms in Trichoderma harzianum E58 and their significance in cellulose hydrolysis". Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5829.
Texto completo da fonteMokatse, Khomotso. "Production, characterization and evaluation of fungal cellulases for effective digestion of cellulose". Thesis, University of Limpopo (Turfloop Campus), 2013. http://hdl.handle.net/10386/1129.
Texto completo da fonteThe production of cellulase is a key factor in the hydrolysis of cellulosic materials and it is essential to make the process economically viable. Cellulases are the most studied multi- enzyme complex and comprise of endo-glucanases (EG), cellobiohydrolases (CBH) and β- glucosidases (BGL). The complete cellulase system; comprising CBH, EG and BGL components thus acts synergistically to convert crystalline cellulose to glucose. Cellulases are currently the third largest industrial enzyme worldwide. This is due to their wide applications in cotton processing, paper recycling, juice extraction, as detergent enzymes and additives in animal feed. In this study, production of cellulase by five fungal isolates (BTU 251-BTU 255) isolated from mushrooms, was investigated and optimised. Internal transcribed spacer regions (ITS1 and ITS4) were applied to identify the five fungal microorganisms. Isolates were identified as follows: BTU 251 as Aspegillus niger,BTU 253 as Penicillium polonicum, and BTU 255 as Penicillium polonicum. Cellulase was produced in shake flask cultures using Mandel’s mineral solution medium and Avicel as a carbon source. Cellulase activity was tested using 3, 5-Dinitrosalicylic acid assay and zymography, A. niger BTU 251 showed five activity bands ranging from 25- 61 kDa had an average nkat of 7000. Cultures from BTU 252 were the least active with an average nkat/ml of 200 and one activity band of 25 kDa. P. polonicum BTU 253 showed three activity bands ranging between 45 and 60 kDa and had an average nkat/ml of 2200. BTU 254 showed five activity bands ranging from 22- 116 kDa and had average nkat of 350. P. polonicum BTU 255 produced the highest cellulase activity of 8000 nkat/ml and with three activity bands estimated at 45-60 kDa on zymography. The optimal temperature for activity of the cellulases was between 55-70°C and enzymes were most active within a pH range of 4-6. Optimal pH for production of cellulases by P. polonicum BTU 255, P. polonicum BTU 253 and A. niger BTU 251 was 4 while optimal temperature for production of the cellulases was between 50-55°C. Total cellulase activity was determined using Whatman No.1 filter paper as a substrate and β- glucosidase production was determined in polyacrylamide gels using esculin as a substrate. In the hydrolysis of crystalline cellulose (Avicel), a combination of A. niger BTU 251 and P. polonicum BTU 255 (1:1), (1:9), (1:3), and (1:2) produced maximum glucose as follows: 1:1 (0.83g/L), 1:9 (10.4g/L), 1:3 (0.77g/L) and 1:2 (0.73g/L). Cellulases from P. polonicum BTU 255 were partially purified using affinity precipitation and analysed using MALDI- TOF/TOF. Peptide sequences of P. polonicum obtained from MALDI-TOF/TOF analysis were aligned by multiple sequence alignment with C. pingtungium. Conserved regions were identified using BLAST anaylsis as sequences of cellobiohydrolases. More research is required in producing a variety of cellulases that are capable of hydrolysing crystalline cellulose, the current study contributes to possible provision of locally developed combinations of cellulases that can be used in the production of bioethanol.
Helle, Steve. "Biosurfactants & cellulose hydrolysis". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61308.
Texto completo da fonteVan, Rooyen Ronel 1976. "Genetic engineering of the yeast Saccharomyces cerevisiae to ferment cellobiose". Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19455.
Texto completo da fontePCT patent registered: https://www.google.com/patents/WO2009034414A1?cl=en&dq=pct/ib2007/004098&hl=en&sa=X&ei=b7AxUsSZK4jB0gWi14HgCQ&ved=0CEkQ6AEwAg USA: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en
USA patent registered: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en
ENGLISH ABSTRACT: The conversion of cellulosic biomass into fuels and chemicals has the potential to positively impact the South African economy, but is reliant on the development of low-cost conversion technology. Perhaps the most important progress to be made is the development of “consolidated bioprocessing” (CBP). CBP refers to the conversion of pretreated biomass into desired product(s) in a single process step with either a single organism or consortium of organisms and without the addition of cellulase enzymes. Among the microbial hosts considered for CBP development, Saccharomyces cerevisiae has received significant interest from the biotechnology community as the yeast preferred for ethanol production. The major advantages of S. cerevisiae include high ethanol productivity and tolerance, as well as a well-developed gene expression system. Since S. cerevisiae is non-cellulolytic, the functional expression of at least three groups of enzymes, namely endoglucanases (EC 3.2.1.4); exoglucanases (EC 3.2.1.91) and β-glucosidases (EC 3.2.1.21) is a prerequisite for cellulose conversion via CBP. The endo- and exoglucanases act synergistically to efficiently degrade cellulose to soluble cellodextrins and cellobiose, whereas the β-glucosidases catalyze the conversion of the soluble cellulose hydrolysis products to glucose. This study focuses on the efficient utilization of cellobiose by recombinant S. cerevisiae strains that can either hydrolyse cellobiose extracellularly or transport and utilize cellobiose intracellularly. Since it is generally accepted that S. cerevisiae do not produce a dedicated cellobiose permease/transporter, the obvious strategy was to produce a secretable β-glucosidase that will catalyze the hydrolysis of cellobiose to glucose extracellularly. β-Glucosidase genes of various fungal origins were isolated and heterologously expressed in S. cerevisiae. The mature peptide sequence of the respective β-glucosidases were fused to the secretion signal of the Trichoderma reesei xyn2 gene and expressed constitutively from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The maximum specific growth rates (μmax) of the recombinant strains were compared during batch cultivation in high-performance bioreactors. S. cerevisiae secreting the recombinant Saccharomycopsis fibuligera BGL1 enzyme was identified as the best strain and grew at 0.23 h-1 on cellobiose (compared to 0.29 h-1 on glucose). More significantly, was the ability of this strain to anaerobically ferment cellobiose at 0.18 h-1 (compared to 0.25 h-1 on glucose). However, extracellular cellobiose hydrolysis has two major disadvantages, namely glucose’s inhibitory effect on the activity of cellulase enzymes as well as the increased risk of contamination associated with external glucose release. In an alternative approach, the secretion signal from the S. fibuligera β-glucosidase (BGL1) was removed and expressed constitutively from the above-mentioned multi-copy yeast expression vector. Consequently, the BGL1 enzyme was functionally produced within the intracellular space of the recombinant S. cerevisiae strain. A strategy employing continuous selection pressure was used to adapt the native S. cerevisiae disaccharide transport system(s) for cellobiose uptake and subsequent intracellular utilization. RNA Bio-Dot results revealed the induction of the native α-glucoside (AGT1) and maltose (MAL) transporters in the adapted strain, capable of transporting and utilizing cellobiose intracellularly. Aerobic batch cultivation of the strain resulted in a μmax of 0.17 h-1 and 0.30 h-1 when grown in cellobiose- and cellobiose/maltose-medium, respectively. The addition of maltose significantly improved the uptake of cellobiose, suggesting that cellobiose transport (via the combined action of the maltose permease and α-glucosidase transporter) is the rate-limiting step when the adapted strain is grown on cellobiose as sole carbon source. In agreement with the increased μmax value, the substrate consumption rate also improved significantly from 0.25 g.g DW-1.h-1 when grown on cellobiose to 0.37 g.g DW-1.h-1 upon addition of maltose to the medium. The adapted strain also displayed several interesting phenotypical characteristics, for example, flocculation, pseudohyphal growth and biofilm-formation. These features resemble some of the properties associated with the highly efficient cellulase enzyme systems of cellulosome-producing anaerobes. Recombinant S. cerevisiae strains that can either hydrolyse cellobiose extracellularly or transport and utilize cellobiose intracellularly. Both recombinant strains are of particular interest when the final goal of industrial-scale ethanol production from cellulosic waste is considered. However, the latter strain’s ability to efficiently remove cellobiose from the extracellular space together with its flocculating, pseudohyphae- and biofilm-forming properties can be an additional advantage when the recombinant S. cerevisiae strain is considered as a potential host for future CBP technology.
AFRIKAANSE OPSOMMING: Die omskakeling van sellulose-bevattende biomassa na brandstof en chemikalieë beskik oor die potensiaal om die Suid-Afrikaanse ekonomie positief te beïnvloed, indien bekostigbare tegnologie ontwikkel word. Die merkwaardigste vordering tot dusvêr kon in die ontwikkeling van “gekonsolideerde bioprosessering” (CBP) wees. CBP verwys na die eenstap-omskakeling van voorafbehandelde biomassa na gewenste produkte met behulp van ‘n enkele organisme of ‘n konsortium van organismes sonder die byvoeging van sellulase ensieme. Onder die mikrobiese gashere wat oorweeg word vir CBP-ontwikkeling, het Saccharomyces cerevisiae as die voorkeur gis vir etanolproduksie troot belangstelling by die biotegnologie-gemeenskap ontlok. Die voordele van S. cerevisiae sluit in hoë etanol-produktiwiteit en toleransie, tesame met ‘n goed ontwikkelde geen-uitdrukkingsisteem. Aangesien S. cerevisiae nie sellulose kan benut nie, is die funksionele uitdrukking van ten minste drie groepe ensieme, naamlik endoglukanases (EC 3.2.1.4); eksoglukanases (EC 3.2.1.91) en β-glukosidases (EC 3.2.1.21), ‘n voorvereiste vir die omskakeling van sellulose via CBP. Die sinergistiese werking van endo- en eksoglukanases word benodig vir die effektiewe afbraak van sellulose tot oplosbare sello-oligosakkariede en sellobiose, waarna β-glukosidases die finale omskakeling van die oplosbare sellulose-afbraak produkte na glukose kataliseer. Hierdie studie fokus op die effektiewe benutting van sellobiose m.b.v. rekombinante S. cerevisiae-rasse met die vermoeë om sellobiose ekstrasellulêr af te breek of dit op te neem en intrasellulêr te benut. Aangesien dit algemeen aanvaar word dat S. cerevisiae nie ‘n toegewyde sellobiosepermease/ transporter produseer nie, was die mees voor-die-hand-liggende strategie die produksie van ‘n β-glukosidase wat uitgeskei word om sodoende die ekstrasellulêre hidroliese van sellobiose na glukose te kataliseer. β-Glukosidase gene is vanaf verskeie fungi geïsoleer en daaropvolgend in S. cerevisiae uitgedruk. Die geprosesseerde peptiedvolgorde van die onderskeie β-glukosidases is met die sekresiesein van die Trichoderma reesei xyn2-geen verenig en konstitutief vanaf ‘n multikopie-gisuitdrukkingsvektor onder transkripsionele beheer van die S. cerevisiae PGK1 promotor en termineerder uitgedruk. Die gevolglike rekombinante ensieme is op grond van hul pH en temperatuur optima, asook kinetiese eienskappe, gekarakteriseer. Die maksimum spesifieke groeitempos (μmax) van die rekombinante rasse is gedurende aankweking in hoë-verrigting bioreaktors vergelyk. Die S. cerevisiae ras wat die rekombinante Saccharomycopsis fibuligera BGL1 ensiem uitskei, was as the beste ras geïdentifiseer en kon teen 0.23 h-1 op sellobiose (vergeleke met 0.29 h-1 op glukose) groei. Meer noemenswaardig is the ras se vermoë om sellobiose anaërobies teen 0.18 h-1 (vergeleke met 0.25 h-1 op glukose) te fermenteer. Ekstrasellulêre sellobiose-hidroliese het twee groot nadele, naamlik glukose se onderdrukkende effek op die aktiwiteit van sellulase ensieme, asook die verhoogde risiko van kontaminasie wat gepaard gaan met die glukose wat ekstern vrygestel word. ’n Alternatiewe benadering waarin die sekresiesein van die S. fibuligera β-glucosidase (BGL1) verwyder en konstitutief uitgedruk is vanaf die bogenoemde multi-kopie gisuitrukkingsvektor, is gevolg. Die funksionele BGL1 ensiem is gevolglik binne-in die intrasellulêre ruimte van die rekombinante S. cerevisiae ras geproduseer. Kontinûe selektiewe druk is gebruik om die oorspronklike S. cerevisiae disakkaried-transportsisteme vir sellobiose-opname and daaropvolgende intrasellulêre benutting aan te pas. RNA Bio-Dot resultate het gewys dat die oorspronklike α-glukosied (AGT1) en maltose (MAL) transporters in die aangepaste ras, wat in staat is om sellobiose op te neem en intrasellulêr te benut, geïnduseer is. Aërobiese kweking van die geselekteerde ras het gedui dat die ras teen 0.17 h-1 en 0.30 h-1 groei in onderskeidelik sellobiose en sellobiose/maltose-medium. Die byvoeging van maltose het die opname van sellobiose betekenisvol verbeter, waarna aangeneem is dat sellobiose transport (via die gekombineerde werking van die maltose permease en α-glukosidase transporter) die beperkende stap gedurende groei van die geselekteerde ras op sellobiose as enigste koolstofbron is. In ooreenstemming hiermee, het die substraatbenuttingstempo ook betekenisvol toegeneem van 0.25 g.g DW-1.h-1, gedurende groei op sellobiose, tot 0.37 g.g DW-1.h-1 wanneer maltose by die medium gevoeg word. Die geselekteerde ras het ook verskeie interessante fenotipiese kenmerke getoon, byvoorbeeld flokkulasie, pseudohife- en biofilm-vorming. Hierdie eienskappe kom ooreen met sommige van die kenmerke wat met die hoogs effektiewe sellulase ensiem-sisteme van sellulosomeproduserende anaerobe geassosieer word. Hierdie studie beskryf die suksesvolle konstruksie van ‘n rekombinante S. cerevisiae ras met die vermoë om sellobiose ekstrasellulêr af te breek of om dit op te neem en intrasellulêr te benut. Beide rekombinante rasse is van wesenlike belang indien die einddoel van industriële-skaal etanolproduksie vanaf selluloseafval oorweeg word. Die laasgenoemde ras se vermoë om sellobiose effektief uit die ekstrasellulêre ruimte te verwyder tesame met die flokkulasie, pseudohife- en biofilm-vormings eienskappe kan ‘n addisionele voordeel inhou, indien die rekombinante S. cerevisiae ras as ‘n potensiële gasheer vir toekomstige CBP-tegnologie oorweeg word.
Houghton, James. "Molecular diversity and functional composition of cellulose degrading communities in anoxic environments". Thesis, University of Liverpool, 2013. http://livrepository.liverpool.ac.uk/14933/.
Texto completo da fonteShaw, Paul B. "Studies of the alkaline degradation of cellulose and the isolation of isosaccharinic acids". Thesis, University of Huddersfield, 2013. http://eprints.hud.ac.uk/id/eprint/19266/.
Texto completo da fonteSadie, Christa J. (Christiena Johanna). "Expression and characterization of an intracellular cellobiose phosphorylase in Saccharomyces cerevisiae". Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19862.
Texto completo da fonteENGLISH ABSTRACT: Cellulose, a glucose polymer, is considered the most abundant fermentable polymer on earth. Agricultural waste is rich in cellulose and exploiting these renewable sources as a substrate for ethanol production can assist in producing enough bioethanol as a cost-effective replacement for currently used decreasing fossil fuels. Saccharomyces cerevisiae is an excellent fermentative organism of hexoses; however the inability of the yeast to utilize cellulose as a carbon source is a major obstruction to overcome for its use in the production of bio-ethanol. Cellobiose, the major-end product of cellulose hydrolysis, is hydrolyzed by -glucosidase or cellobiose phosphorylase, the latter having a possible metabolic advantage over -glucosidase. Recently, it has been showed that S. cerevisiae is able to transport cellobiose. The construction of a cellulolytic yeast that can transport cellobiose has the advantage that end-product inhibition of the extracellular cellulases by glucose and cellobiose is relieved. Furthermore, the extracellular glucose concentration remains low and the possibility of contamination is decreased. In this study the cellobiose phosphorylase gene, cepA, of Clostridium stercorarium was cloned and expressed under transcriptional control of the constitutive PGK1 promoter and terminator of S. cerevisiae on a multicopy episomal plasmid. The enzyme was expressed intracellulary and thus required the transport of cellobiose into the cell. The fur1 gene was disrupted for growth of the recombinant strain on complex media without the loss of the plasmid. The recombinant strain, S. cerevisiae[yCEPA], was able to sustain aerobic growth on cellobiose as sole carbon source at 30°C with Vmax = 0.07 h-1 and yielded 0.05 g biomass per gram cellobiose consumed. The recombinant enzyme had activity optima of 60°C and pH 6-7. Using Michaelis-Menten kinetics, the Km values for the colorimetric substrate p-nitrophenyl-b-D-glucopyranoside (pNPG) and cellobiose was estimated to be 1.69 and 92.85 mM respectively. Enzyme activity assays revealed that the recombinant protein was localized in the membrane fraction and no activity was present in the intracellular fraction. Due to an unfavourable codon bias in S. cerevisiae, CepA activity was very low. Permeabilized S. cerevisiae[yCEPA] cells had much higher CepA activity than whole cells indicating that the transport of cellobiose was inadequate even after one year of selection. Low activity and insufficient cellobiose transport led to an inadequate glucose supply for the yeast resulting in low biomass formation. Cellobiose utilization increased when combined with other sugars (glucose, galactose, raffinose, maltose), as compared to using cellobiose alone. This is possibly due to more ATP being available for the cell for cellobiose transport. However, no cellobiose was utilized when grown with fructose indicating catabolite repression by this sugar. To our knowledge this is the first report of a heterologously expressed cellobiose phosphorylase in yeast that conferred growth on cellobiose. Furthermore, this report also reaffirms previous data that cellobiose can be utilized intracellularly in S. cerevisiae.
AFRIKAANSE OPSOMMING: Sellulose, ‘n homopolimeer van glukose eenhede, word beskou as die volopste suiker polimeer op aarde. Landbou afval produkte het ‘n hoë sellulose inhoud en benutting van diè substraat vir bio-etanol produksie kan dien as ‘n koste-effektiewe aanvulling en/of vervanging van dalende fossielbrandstof wat tans gebruik word. Die gis, Saccharomyces cerevisiae, is ‘n uitmuntende organisme vir die fermentasie van heksose suikers, maar die onvermoë van die gis om sellulose as koolstofbron te benut is ‘n groot struikelblok in sy gebruik vir die produksie van bio-etanol. Sellobiose, die hoof eindproduk van ensiematiese hidrolise van sellulose, word afgebreek deur -glukosidase of sellobiose fosforilase. Laasgenoemde het ‘n moontlike metaboliese voordeel bo die gebruik van -glukosidase vir sellobiose hidrolise. Daar was onlangs gevind dat S. cerevisiae in staat is om sellobiose op te neem. Die konstruksie van ‘n sellulolitiese gis wat sellobiose intrasellulêr kan benut, het die voordeel dat eindproduk inhibisie van die ekstrasellulêre sellulases deur sellobiose en glukose verlig word. Verder, wanneer die omsetting van glukose vanaf sellobiose intrasellulêr plaasvind, word die ekstrasellulêre glukose konsentrasie laag gehou en die moontlikheid van kontaminasie beperk. In hierdie studie was die sellobiose fosforilase geen, cepA, van Clostridium stercorarium gekloneer en uitgedruk onder transkripsionele beheer van die konstitutiewe PGK1 promoter en termineerder van S. cerevisiae op ‘n multikopie episomale plasmied. Die ensiem is as ‘n intrasellulêre proteïen uitgedruk en het dus die opneem van die sellobiose molekuul benodig. Die disrupsie van die fur1 geen het toegelaat dat die rekombinante ras op komplekse media kon groei sonder die verlies van die plasmied. Die rekombinante ras, S. cerevisiae[yCEPA], het aërobiese groei by 30°C op sellobiose as enigste koolstofbron onderhou met mmax = 0.07 h-1 en ‘n opbrengs van 0.05 gram selle droë gewig per gram sellobiose. Die rekombinante ensiem het optima van 60°C en pH 6-7 gehad. Die K m waardes vir die kolorimetriese substraat pNPG en sellobiose was 1.69 en 92.85 mM onderskeidelik. Ondersoek van die ensiem aktiwiteit het getoon dat die rekombinante proteïen gelokaliseer was in die membraan fraksie en geen aktiwiteit was teenwoordig in die intrasellulêre fraksie nie. CepA aktiwiteit was laag as gevolg van ‘n lae kodon voorkeur in S. cerevisiae. Verder het geperforeerde S. cerevisiae[yCEPA] selle aansienlik beter CepA aktiwiteit getoon as intakte selle. Hierdie aanduiding van onvoldoende transport van sellobiose na binne in die sel tesame met die lae aktiwiteit van die CepA ensiem het gelei tot onvoldoende glukose voorraad vir die sel en min biomassa vorming. Sellobiose verbruik het toegeneem wanneer dit tesame met ander suikers (glukose, galaktose, raffinose, maltose) gemeng was, heelwaarskynlik deur die vorming van ekstra ATP’s vir die sel wat ‘n toename in sellobiose transport teweeg gebring het. Fruktose het egter kataboliet onderdrukking veroorsaak en sellobiose was nie benut nie. Sover ons kennis strek, is hierdie die eerste verslag van ‘n heteroloë sellobiose fosforilase wat in S. cerevisiae uitgedruk is en groei op sellobiose toegelaat het. Verder, bewys die studie weereens dat S. cerevisiae wel sellobiose kan opneem.
Fugelstad, Johanna. "Functional characterization of cellulose and chitin synthase genes in Oomycetes". Doctoral thesis, KTH, Glykovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-34012.
Texto completo da fonteQC 20110531
Ferdinand, Pierre-Henri. "Adhérence et colonisation des fibres de cellulose par la bactérie cellulolytique Clostridium cellulolyticum. : étude du rôle des protéines CipC et HycP". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4729.
Texto completo da fonteClostridium cellulolyticum is a strict anaerobe, cellulolytic bacteria. It produces multienzymatic complexes, called cellulosomes, which are able to efficiently degrade the plant cell wall polysaccharides. Cellulolytic bacteria, including C. cellulolyticum do binds to cellulose since early growth stage. For most of the studied cellulolytic bacteria, adherence to cellulose seems to be mediated by their cellulosomes. However, molecular factors involved in C. cellulolyticum adherence to cellulose remain unknown.My Ph.D. aimed to implement different but complementary strategies to study adhesion and colonization of cellulose fibers by C. cellulolyticum and to identify the molecular mechanism(s) by which the bacteria bind to cellulose. In order to identify some proteins encoding genes involved in adhesion, I firstly developed random mutagenesis and isolated two adhesion deficient mutants. I also used a targeted mutagenesis tool to inactivate some candidate genes.My studies highlight C. cellulolyticum adheres with both high specificity and affinity to cellulose. Colonization of cellulose fibers by C. cellulolyticum forms a mono-layer of segregated cells on cellulose surface and may occur through cycles of adhesion-release-re-adhesion to substrate. Inactivation of the CipC encoding gene led to a short decrease of the mutant strain's adherence level. This result suggests some other proteins may be involved in C. cellulolyticum adhesion to cellulose. Finally, I studied HycP, a produced and secreted CBM3 encoding protein of unknown function. HycP is a unique protein among databases and may have a phagic origin
Livros sobre o assunto "Cellulose – Microbiology"
Simončič, Barbara. Biodegradation of cellulose fibers. New York: Nova Science Publishers, 2010.
Encontre o texto completo da fonteChin-u, Yi. Sŏmyuso punhae hyoso saengsan kyunju rŭl iyong han wanggyŏ wa ssalgyŏ ŭi chaehwaryong kisul kaebal =: Development of technology for utilization of rice hull and rice bran by microorganism produced cellulase. [Seoul]: Nongnimbu, 2007.
Encontre o texto completo da fonteYi, Chin-u. Sŏmyuso punhae hyoso saengsan kyunju rŭl iyong han wanggyŏ wa ssalgyŏ ŭi chaehwaryong kisul kaebal =: Development of technology for utilization of rice hull and rice bran by microorganism produced cellulase. [Seoul]: Nongnimbu, 2007.
Encontre o texto completo da fonteChin-u, Yi. Sŏmyuso punhae hyoso saengsan kyunju rŭl iyong han wanggyŏ wa ssalgyŏ ŭi chaehwaryong kisul kaebal =: Development of technology for utilization of rice hull and rice bran by microorganism produced cellulase. [Seoul]: Nongnimbu, 2007.
Encontre o texto completo da fontePrimrose, S. B. Modern biotechnology. Oxford [Oxfordshire]: Blackwell Scientific Publications, 1987.
Encontre o texto completo da fonteNecrosis: Methods and protocols. New York: Humana Press, 2013.
Encontre o texto completo da fonteTissue remodeling and epithelial morphogenesis. San Diego: Elsevier/Academic Press, 2009.
Encontre o texto completo da fonteEdwards, M. J. ATCC microbes & cells at work: An index to ATCC strains with special applications. Rockville, Md: American Type Culture Collection, 1988.
Encontre o texto completo da fonteBacterial growth and division: Biochemistry and regulation of prokaryotic and eukaryotic division cycles. San Diego: Academic Press, 1991.
Encontre o texto completo da fonteSrivastava, Manish, P. K. Mishra, Neha Srivastava, Ram Lakhan Singh e P. W. Ramteke. New and Future Developments in Microbial Biotechnology and Bioengineering: From Cellulose to Cellulase - Strategies to Improve Biofuel Production. Elsevier, 2019.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cellulose – Microbiology"
Degli-Innocenti, F., G. Goglino, G. Bellia, M. Tosin, P. Monciardini e L. Cavaletti. "Isolation and Characterization of Thermophilic Microorganisms Able to Grow on Cellulose Acetate". In Microbiology of Composting, 273–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-08724-4_23.
Texto completo da fonteNozhevnikova, A. N., e M. V. Simankova. "Interspecies Transport of Hydrogen in Thermophilic Anaerobic Cellulose Decomposition". In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, 427–29. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0613-9_51.
Texto completo da fonteHimmel, Michael E., John O. Baker, William S. Adney e Stephen R. Decker. "Cellulases, Hemicellulases, and Pectinases". In Methods for General and Molecular Microbiology, 596–610. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817497.ch24.
Texto completo da fonteEl Nawawy, A. S., E. El-Rayes, R. D. Al Hussaini e A. Tawheed. "Bioconversion of Cellulosic Wastes". In Perspectives in Biotechnology and Applied Microbiology, 223–30. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_16.
Texto completo da fonteTsao, G. T. "Structures of Cellulosic Materials and their Hydrolysis by Enzymes". In Perspectives in Biotechnology and Applied Microbiology, 205–12. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_14.
Texto completo da fonteSukan, S. Suha. "Challenges in Bioconversion of Cellulosic and Partially Soluble Plant Materials in Submerged Culture". In Developments in Food Microbiology—3, 109–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1085-3_5.
Texto completo da fonteBu’lock, John D. "Biodegradation of Non-Cellulosic Waste for Environmental Conservation and Fuel Production". In Perspectives in Biotechnology and Applied Microbiology, 171. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_12.
Texto completo da fonteMoo-Young, M., J. Lamptey e P. Girard. "Bioconversion of Cellulosic Waste into Protein and Fuel Products: A Case Study of the Technoeconomic Potentials". In Perspectives in Biotechnology and Applied Microbiology, 183–201. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_13.
Texto completo da fonteWilson, D. B. "Cellulases". In Encyclopedia of Microbiology, 252–58. Elsevier, 2009. http://dx.doi.org/10.1016/b978-012373944-5.00138-3.
Texto completo da fonteLamed, Raphael, e Edward A. Bayer. "The Cellulosome of Clostridium thermocellum". In Advances in Applied Microbiology, 1–46. Elsevier, 1988. http://dx.doi.org/10.1016/s0065-2164(08)70203-x.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cellulose – Microbiology"
Snevajsova, P., J. Vytrasova e J. Remesova. "Effect of oxidized cellulose on probiotic bacteria". In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0068.
Texto completo da fonteKvesitadze, E., L. Kutateladze, M. Jobava, N. Zakariashvili e I. Khokhashvili. "Xylanase and cellulose free xylanase preparations from microscopic fungi isolated in the South Caucasus". In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0098.
Texto completo da fonteVasiliauskiene, Dovile, Andrijana Danytė, Giedrius Balčiūnas e Jaunius Urbonavičius. "The cellulase activity of the fungi that grow on the bio-based thermal insulation composite materials". In 1st International Electronic Conference on Microbiology. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecm2020-07141.
Texto completo da fonteUeda, Junko, Keiko Watanabe, Shuichi Yamamoto e Norio Kurosawa. "Isolation and characterization of cellulase producing bacteria from pruning tree compost and soil". In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0070.
Texto completo da fontePujiati, M. W. Ardhi, E. Muktiani, N. K. Dewi, N. Jadid e E. N. Prasetyo. "The Effect of Incubation Time on Various Type of Local Agricultural Waste in Madiun, Indonesia to Produce Cellulases Using Trichoderma viride". In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.030.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cellulose – Microbiology"
Peck, Jr., H. D., L. G. Ljungdahl, L. E. Mortenson e J. K. W. Wiegel. The microbiology and physiology of anaerobic fermentations of cellulose: Progress report, November 1988--July 1989. Office of Scientific and Technical Information (OSTI), janeiro de 1989. http://dx.doi.org/10.2172/5961636.
Texto completo da fonteLjungdahl, L. G., J. Wiegel, H. D. Jr Peck e L. E. Mortenson. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report. Office of Scientific and Technical Information (OSTI), agosto de 1993. http://dx.doi.org/10.2172/90164.
Texto completo da fonteLjungdahl, L. G. Microbiology and physiology of anaerobic fermentation of cellulose. Progress report (4/30/91--4/30/92) and outline of work for the period 9/1/92--9/1/93. Office of Scientific and Technical Information (OSTI), dezembro de 1992. http://dx.doi.org/10.2172/90165.
Texto completo da fonte