Literatura científica selecionada sobre o tema "Cellulose"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cellulose".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cellulose"
Deng, Yijie, e Shiao Y. Wang. "Sorption of Cellulases in Biofilm Enhances Cellulose Degradation by Bacillus subtilis". Microorganisms 10, n.º 8 (26 de julho de 2022): 1505. http://dx.doi.org/10.3390/microorganisms10081505.
Texto completo da fonteKumar, Amit. "Dissolving pulp production: Cellulases and xylanases for the enhancement of cellulose accessibility and reactivity". Physical Sciences Reviews 6, n.º 5 (30 de abril de 2021): 111–29. http://dx.doi.org/10.1515/psr-2019-0047.
Texto completo da fonteHetzler, Stephan, Daniel Bröker e Alexander Steinbüchel. "Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains". Applied and Environmental Microbiology 79, n.º 17 (21 de junho de 2013): 5159–66. http://dx.doi.org/10.1128/aem.01214-13.
Texto completo da fonteHall, J., G. W. Black, L. M. A. Ferreira, S. J. Millward-Sadler, B. R. S. Ali, G. P. Hazlewood e H. J. Gilbert. "The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel". Biochemical Journal 309, n.º 3 (1 de agosto de 1995): 749–56. http://dx.doi.org/10.1042/bj3090749.
Texto completo da fonteBrumm, Phillip, Phillip Brumm, Dan Xie, Dan Xie, Larry Allen, Larry Allen, David A. Mead e David A. Mead. "Hydrolysis of Cellulose by Soluble Clostridium Thermocellum and Acidothermus Cellulolyticus Cellulases". Journal of Enzymes 1, n.º 1 (26 de abril de 2018): 5–19. http://dx.doi.org/10.14302/issn.2690-4829.jen-18-2025.
Texto completo da fonteChatterjee, Soumya, Sonika Sharma, Rajesh Kumar Prasad, Sibnarayan Datta, Dharmendra Dubey, Mukesh K. Meghvansi, Mohan G. Vairale e Vijay Veer. "Cellulase Enzyme based Biodegradation of Cellulosic Materials: An Overview". South Asian Journal of Experimental Biology 5, n.º 6 (11 de março de 2016): 271–82. http://dx.doi.org/10.38150/sajeb.5(6).p271-282.
Texto completo da fontePratama, Rahadian, I. Made Artika, Tetty Chaidamsari, Herti Sugiarti e Soekarno Mismana Putra. "Isolation and Molecular Cloning of Cellulase Gene from Bovine Rumen Bacteria". Current Biochemistry 1, n.º 1 (2 de setembro de 2017): 29–36. http://dx.doi.org/10.29244/cb.1.1.29-36.
Texto completo da fonteLi, Xia, Xiaoyan Geng, Lu Gao, Yanfang Wu, Yongli Wang, Alei Geng, Jianzhong Sun e Jianxiong Jiang. "Optimized expression of a hyperthermostable endoglucanase from Pyrococcus horikoshii in Arabidopsis thaliana". BioResources 14, n.º 2 (19 de fevereiro de 2019): 2812–26. http://dx.doi.org/10.15376/biores.14.2.2812-2826.
Texto completo da fonteMizuno, Masahiro, Shuji Kachi, Eiji Togawa, Noriko Hayashi, Kouichi Nozaki, Toshiyuki Itoh e Yoshihiko Amano. "Structure of Regenerated Celluloses Treated with Ionic Liquids and Comparison of their Enzymatic Digestibility by Purified Cellulase Components". Australian Journal of Chemistry 65, n.º 11 (2012): 1491. http://dx.doi.org/10.1071/ch12342.
Texto completo da fonteBu, Yingjie, Bassam Alkotaini, Bipinchandra K. Salunke, Aarti R. Deshmukh, Pathikrit Saha e Beom Soo Kim. "Direct ethanol production from cellulose by consortium of Trichoderma reesei and Candida molischiana". Green Processing and Synthesis 8, n.º 1 (28 de janeiro de 2019): 416–20. http://dx.doi.org/10.1515/gps-2019-0009.
Texto completo da fonteTeses / dissertações sobre o assunto "Cellulose"
Ravachol, Julie. "Rôle des glycosides hydrolases de famille 9 dans la dégradation de la cellulose et exploration du catabolisme de xyloglucane chez Ruminiclostridium cellulolyticum". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4054.
Texto completo da fonteRuminiclostridium cellulolyticum is a mesophilic and strictly anaerobic bacterium. It produces multienzymatic complexes called cellulosomes which efficiently degrade the plant cell wall polysaccharides. Family-9 Glycoside Hydrolases (GH9) are plethoric in cellulosome-producing bacteria. The genome of R. cellulolyticum thus encodes for 13 GH9 enzymes, 12 of them participate to the cellulosomes.My Ph. D. aimed at characterizing all GH9 enzymes from R. cellulolyticum, by determining their activities in a free and complexed states, in order to elucidate their role in cellulose degradation. All GH9 enzymes exhibit various activities and substrate specificities. Two of them have atypical activities, since one is inactive and one is a xyloglucanase. Results obtained when all GH9 are in complex highlighted the importance of GH9 diversity and revealed they act synergistically in cellulose depolymerization. Moreover, expanding the panel of GH9 enzymes by introducing an exogenous cellulase from Lachnoclostridium phytofermentans improved the cellulolytic capacities of R. cellulolyticum. The xyloglucanase activity of one GH9 enzyme prompted me to investigate the xyloglucan catabolism in R. cellulolyticum. This work uncovered the presence of a specialized equipment for xyloglucan utilization. After extracellular digestion of xyloglucan by cellulosomal enzymes, xyloglucan dextrins are imported into the cytoplasm via a specific ABC-transporter and sequentially hydrolyzed by cytoplasmic enzymes into fermentable mono and disaccharides
Cervin, Nicholas. "Porous Cellulose Materials from Nano Fibrillated Cellulose". Licentiate thesis, KTH, Fiberteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104196.
Texto completo da fonteQC 20121107
Peri, Suma Lee Yoon Y. "Kinetic investigation and modeling of cellulase enzyme using non-crystalline cellulose and cello-oligosaccharides". Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/PERI_SUMA_47.pdf.
Texto completo da fonteMokatse, Khomotso. "Production, characterization and evaluation of fungal cellulases for effective digestion of cellulose". Thesis, University of Limpopo (Turfloop Campus), 2013. http://hdl.handle.net/10386/1129.
Texto completo da fonteThe production of cellulase is a key factor in the hydrolysis of cellulosic materials and it is essential to make the process economically viable. Cellulases are the most studied multi- enzyme complex and comprise of endo-glucanases (EG), cellobiohydrolases (CBH) and β- glucosidases (BGL). The complete cellulase system; comprising CBH, EG and BGL components thus acts synergistically to convert crystalline cellulose to glucose. Cellulases are currently the third largest industrial enzyme worldwide. This is due to their wide applications in cotton processing, paper recycling, juice extraction, as detergent enzymes and additives in animal feed. In this study, production of cellulase by five fungal isolates (BTU 251-BTU 255) isolated from mushrooms, was investigated and optimised. Internal transcribed spacer regions (ITS1 and ITS4) were applied to identify the five fungal microorganisms. Isolates were identified as follows: BTU 251 as Aspegillus niger,BTU 253 as Penicillium polonicum, and BTU 255 as Penicillium polonicum. Cellulase was produced in shake flask cultures using Mandel’s mineral solution medium and Avicel as a carbon source. Cellulase activity was tested using 3, 5-Dinitrosalicylic acid assay and zymography, A. niger BTU 251 showed five activity bands ranging from 25- 61 kDa had an average nkat of 7000. Cultures from BTU 252 were the least active with an average nkat/ml of 200 and one activity band of 25 kDa. P. polonicum BTU 253 showed three activity bands ranging between 45 and 60 kDa and had an average nkat/ml of 2200. BTU 254 showed five activity bands ranging from 22- 116 kDa and had average nkat of 350. P. polonicum BTU 255 produced the highest cellulase activity of 8000 nkat/ml and with three activity bands estimated at 45-60 kDa on zymography. The optimal temperature for activity of the cellulases was between 55-70°C and enzymes were most active within a pH range of 4-6. Optimal pH for production of cellulases by P. polonicum BTU 255, P. polonicum BTU 253 and A. niger BTU 251 was 4 while optimal temperature for production of the cellulases was between 50-55°C. Total cellulase activity was determined using Whatman No.1 filter paper as a substrate and β- glucosidase production was determined in polyacrylamide gels using esculin as a substrate. In the hydrolysis of crystalline cellulose (Avicel), a combination of A. niger BTU 251 and P. polonicum BTU 255 (1:1), (1:9), (1:3), and (1:2) produced maximum glucose as follows: 1:1 (0.83g/L), 1:9 (10.4g/L), 1:3 (0.77g/L) and 1:2 (0.73g/L). Cellulases from P. polonicum BTU 255 were partially purified using affinity precipitation and analysed using MALDI- TOF/TOF. Peptide sequences of P. polonicum obtained from MALDI-TOF/TOF analysis were aligned by multiple sequence alignment with C. pingtungium. Conserved regions were identified using BLAST anaylsis as sequences of cellobiohydrolases. More research is required in producing a variety of cellulases that are capable of hydrolysing crystalline cellulose, the current study contributes to possible provision of locally developed combinations of cellulases that can be used in the production of bioethanol.
Schult, Tove. "Properties of acid sulfite cellulose for cellulose derivatives". Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1508.
Texto completo da fonteLinder, Markus. "Structure-function relationships in fungal cellulose-binding domains /". Espoo, Finland : VTT, Technical Research Centre of Finland, 1996. http://www.vtt.fi/inf/pdf/publications/1996/P294.pdf.
Texto completo da fonteGal, Laurent. "Etude du cellulosome de Clostridium cellulolyticum et de l'un de ses composants : la cellulase CelG". Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11071.
Texto completo da fonteLane, J. M. "Solid state NMR studies of cellulose and cellulose acetate". Thesis, University of East Anglia, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374690.
Texto completo da fonteHu, Gang. "Adsorpton and Activity of Cellulase Enzymes on Various of Cellulose Substrates". NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-04222009-234535/.
Texto completo da fonteQian, Chen. "Adsorption of Xyloglucan onto Cellulose and Cellulase onto Self-assembled Monolayers". Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/42496.
Texto completo da fonteMaster of Science
Livros sobre o assunto "Cellulose"
Yaser, Abu Zahrim, Mohd Sani Sarjadi e Junidah Lamaming. Cellulose. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084.
Texto completo da fonteClarke, Anthony J. Biodegradation of cellulose: Enzymology and biotechnology. Lancaster, Pa: Technomic Pub. Co., 1996.
Encontre o texto completo da fonteKhan, Sher Bahadar, e Tahseen Kamal. Bacterial Cellulose. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003118756.
Texto completo da fonteOksman, Kristiina, e Mohini Sain, eds. Cellulose Nanocomposites. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0938.
Texto completo da fonteHeinze, Thomas J., e Wolfgang G. Glasser, eds. Cellulose Derivatives. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0688.
Texto completo da fonteHeinze, Thomas, Omar A. El Seoud e Andreas Koschella. Cellulose Derivatives. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73168-1.
Texto completo da fonteFan, Liang-tseng, Mahendra Moreshwar Gharpuray e Yong-Hyun Lee. Cellulose Hydrolysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72575-3.
Texto completo da fonteHamad, Wadood Y. Cellulose Nanocrystals. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118675601.
Texto completo da fonteMuthu, Subramanian Senthilkannan, e R. Rathinamoorthy. Bacterial Cellulose. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9581-3.
Texto completo da fonteKumar, Vinod, Saurabh Saran, Ashok Pandey e Carlos Ricardo Soccol. Bacterial Cellulose. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003355434.
Texto completo da fonteCapítulos de livros sobre o assunto "Cellulose"
Kopp, Victória Vieira, Vânia Queiroz, Mariliz Gutterres e João Henrique Zimnoch dos Santos. "Application of Cellulose in Leather". In Cellulose, 277–85. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-19.
Texto completo da fonteIndarti, Eti, Zalniati Fonna Rozali, Dewi Yunita, Laila Sonia e Marwan Mas. "Characteristics of Cellulose Nanocrystals from Sugarcane Bagasse Isolated from Various Methods". In Cellulose, 201–15. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-14.
Texto completo da fonteYahya, Mohammad Harris M., e Noor Azrimi Umor. "Challenges and State of the Art of Allium Pulp Development for Papermaking". In Cellulose, 269–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-18.
Texto completo da fonteMeng, Tan Kean, Muaz Mohd Zaini Makhtar, Muhammed Aidiel Asyraff Mohmad Hatta e Mohd Asyraf Kassim. "Biorefinery of Biofuel Production". In Cellulose, 45–70. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-4.
Texto completo da fonteAziz, Siti Ayu, e Mohd Sani Sarjadi. "A Brief Overview of the Use of Bamboo Biomass in the Asian Region's Energy Production". In Cellulose, 7–26. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-2.
Texto completo da fonteRaymond, Rozelyn Ignesia, e Khim Phin Chong. "Review on the Current Updates on Palm Oil Industry and Its Biomass Recycling to Fertilizer in Malaysia". In Cellulose, 71–81. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-5.
Texto completo da fontePromie, Ahsan Rajib, Afroza Akter Liza, Md Nazrul Islam, Atanu Kumar Das, Md Omar Faruk, Sumaya Haq Mim e Kallol Sarker. "Cellulose-Based Bioadhesive for Wood-Based Composite Applications". In Cellulose, 163–73. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-11.
Texto completo da fonteUmor, Noor Azrimi, Nurul Hidayah Adenan, Nadya Hajar, Nurul Ain Mat Akil, Nor Haniah A. Malik, Shahrul Ismail e Zaim Hadi Meskam. "Comparing Properties and Potential of Pinewood, Dried Tofu, and Oil Palm Empty Fruit Bunch (EFB) Pellet as Cat Litter". In Cellulose, 301–7. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-21.
Texto completo da fonteAziz, Siti Ayu, Sabrina Soloi, Mohd Hafiz Abd Majid, Juferi Idris, Md Lutfor Rahman e Mohd Sani Sarjadi. "Pre-Treatment of Oil Palm Empty Fruit Bunches with Sea Water Improves the Qualities of Lignocellulose Biomass". In Cellulose, 27–43. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-3.
Texto completo da fonteTanpichai, Supachok. "All-Cellulose Composites". In Cellulose, 145–62. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cellulose"
Ding, H., e F. Xu. "CELLULOSE-ACCESSIBILITY OF CELLULASES". In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.770.
Texto completo da fonteZhang, P. F., e Z. J. Pei. "Effects of Ultrasonic Treatments on Cellulose in Cellulosic Biofuel Manufacturing: A Literature Review". In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34180.
Texto completo da fonteAtalla, Rajai H. "Studies of Polymorphy in Native Cellulose". In Papermaking Raw Materials, editado por V. Punton. Fundamental Research Committee (FRC), Manchester, 1985. http://dx.doi.org/10.15376/frc.1985.1.59.
Texto completo da fonteGraham, William D., Stephanie L. Mathews, Christina Stolarchuk, Andrew Moore, Sunkyu Park, Joel J. Pawlak e Amy Grunden. "Investigation into the Structural and Thermal Behavior of Bacterial Cellulose Fbers after Biologically Relevant Purification". In Advances in Pulp and Paper Research, Cambridge 2013, editado por S. J. I’ Anson. Fundamental Research Committee (FRC), Manchester, 2013. http://dx.doi.org/10.15376/frc.2013.2.785.
Texto completo da fonteSINGH ROHEWAL, SARGUN SINGH, JIHO SEO, NIHAL KANBARGI e AMIT K. NASKAR. "RECYCLABLE CELLULOSE FIBER REINFORCED VITRIMER COMPOSITE". In Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36699.
Texto completo da fonteHospodarova, Viola, Nadezda Stevulova, Vojtech Vaclavik, Tomas Dvorsky e Jaroslav Briancin. "Cellulose Fibres as a Reinforcing Element in Building Materials". In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.104.
Texto completo da fonteChen, Xiao-Quan, Xue-Yan Deng, Wen-Hao Shen e Meng-Yu Jia. "Preparation and Characterization of Spherical Nanosized Cellulose by Enzymatic Hydrolysis of Pulp Fibers". In Advances in Pulp and Paper Research, Oxford 2017. Fundamental Research Committee (FRC), Manchester, 2017. http://dx.doi.org/10.15376/frc.2017.2.785.
Texto completo da fonteLiu, Yu-San, Yonghua Luo, John O. Baker, Yining Zeng, Michael E. Himmel, Steve Smith e Shi-You Ding. "A single molecule study of cellulase hydrolysis of crystalline cellulose". In BiOS, editado por Jörg Enderlein, Zygmunt K. Gryczynski e Rainer Erdmann. SPIE, 2010. http://dx.doi.org/10.1117/12.840975.
Texto completo da fonteYu, Laipu, e Gil Garnier. "Mechanism of Internal Sizing with Alkyl Ketene Dimers: The Role of Vapour Deposition". In The Fundamentals of Papermaking Materials, editado por C. F. Baker. Fundamental Research Committee (FRC), Manchester, 1997. http://dx.doi.org/10.15376/frc.1997.2.1021.
Texto completo da fonteLindström, Tom. "Some Fundamental Chemical Aspects on Paper Forming". In Fundamentals of Papermaking, editado por C. F. Baker e V. Punton. Fundamental Research Committee (FRC), Manchester, 1989. http://dx.doi.org/10.15376/frc.1989.1.311.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cellulose"
Morrison, Mark, e Joshuah Miron. Molecular-Based Analysis of Cellulose Binding Proteins Involved with Adherence to Cellulose by Ruminococcus albus. United States Department of Agriculture, novembro de 2000. http://dx.doi.org/10.32747/2000.7695844.bard.
Texto completo da fonteDelmer, Deborah, Nicholas Carpita e Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, maio de 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Texto completo da fonteBartscherer, K. A., J. J. de Pablo, M. C. Bonnin e J. M. Prausnitz. Purification of aqueous cellulose ethers. Office of Scientific and Technical Information (OSTI), julho de 1990. http://dx.doi.org/10.2172/6084196.
Texto completo da fonteAlan R. White e Ann G. Matthysse. Cellulose Synthesis in Agrobacterium tumefaciens. Office of Scientific and Technical Information (OSTI), julho de 2004. http://dx.doi.org/10.2172/840242.
Texto completo da fonteCuzens, J. E. Conversion of bagasse cellulose into ethanol. Office of Scientific and Technical Information (OSTI), novembro de 1997. http://dx.doi.org/10.2172/674641.
Texto completo da fonteStipanovic, Arthur. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases. Office of Scientific and Technical Information (OSTI), novembro de 2014. http://dx.doi.org/10.2172/1163897.
Texto completo da fonteBarnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), setembro de 2021. http://dx.doi.org/10.21079/11681/42132.
Texto completo da fonteHeintz, C. E., K. A. Rainwater, L. M. Swift, D. L. Barnes e L. A. Worl. Enzymatic degradation of plutonium-contaminated cellulose products. Office of Scientific and Technical Information (OSTI), junho de 1999. http://dx.doi.org/10.2172/350862.
Texto completo da fonteWood, Devon, Hang Liu e Carol J. Salusso. Production and characterization of bacterial cellulose fabrics. Ames: Iowa State University, Digital Repository, novembro de 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-130.
Texto completo da fonteHarmon, Jennifer. Homegrown: Investigating Design Potential of Bacterial Cellulose. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-216.
Texto completo da fonte