Siga este link para ver outros tipos de publicações sobre o tema: Cells Growth.

Artigos de revistas sobre o tema "Cells Growth"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cells Growth".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

PD, Gupta. "Liver Cells Can Dedifferentiate and Act as Progenitor Cells for Liver Growth". Journal of Embryology & Stem Cell Research 3, n.º 2 (2019): 1–2. http://dx.doi.org/10.23880/jes-16000124.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Fujimoto, Naohiro, Bin Han, Masayoshi Nomura e Tetsuro Matsumoto. "WS1-1-1 Nitrogen-Containing Bisphosphonates Inhibit the Growth of Renal Cell Carcinoma Cells(Renal Cell Cancer)". Japanese Journal of Urology 99, n.º 2 (2008): 142. http://dx.doi.org/10.5980/jpnjurol.99.142_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

LIU, LINTAO, SACHIKO ITO, NAOMI NISHIO, YANG SUN, YURIKO TANAKA e KEN-ICHI ISOBE. "GADD34 Promotes Tumor Growth by Inducing Myeloid-derived Suppressor Cells". Anticancer Research 36, n.º 9 (9 de setembro de 2016): 4623–28. http://dx.doi.org/10.21873/anticanres.11012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nagamalleswari, D., e Y. B. Kishore Kumar. "Growth of Cu2ZnSnS4 Thin Film Solar Cells Using Chemical Synthesis". Indian Journal Of Science And Technology 15, n.º 28 (28 de julho de 2022): 1399–405. http://dx.doi.org/10.17485/ijst/v15i28.194.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Balch, Ying. "Subculture human skeletal muscle cells to produce the cells with different Culture medium compositions". Clinical Research and Clinical Trials 3, n.º 4 (30 de abril de 2021): 01–03. http://dx.doi.org/10.31579/2693-4779/036.

Texto completo da fonte
Resumo:
This study aimed to subculture human skeletal muscle cells (HSkMC) using a culture medium with different compositions to determine the most efficient medium for the growth of the human skeletal muscle cells. The culture media was divided into three groups: Group1. An HSkMC growth medium. Group 2. An HSkMC growth medium + with 10% high glucose (GH). Group 3. An HSkMC growth medium + 10% fetal bovine serum (FBS). HSkMC from groups 1 to 3 gradually became round in shape and gathered in clusters. These changes differed between the groups. In group 3, the HSkMC clusters were more in numbers and gathered as significantly more prominent than in the other groups under the EVOS-Microscope shown. We concluded that by manipulating the composition of the culture medium, it is possible to induce HSkMC to promote the best growth.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

González-Quirós, Rafael, Iyziar Munuera e Arild Folkvord. "Cell cycle analysis of brain cells as a growth index in larval cod at different feeding conditions and temperatures". Scientia Marina 71, n.º 3 (30 de julho de 2007): 485–97. http://dx.doi.org/10.3989/scimar.2007.71n3485.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Brombin, Chiara, Massimo Crippa e Clelia Di Serio. "Modeling Cancer Cells Growth". Communications in Statistics - Theory and Methods 41, n.º 16-17 (agosto de 2012): 3043–59. http://dx.doi.org/10.1080/03610926.2012.685547.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

CPK, Cheung. "T Cells, Endothelial Cell, Metabolism; A Therapeutic Target in Chronic Inflammation". Open Access Journal of Microbiology & Biotechnology 5, n.º 2 (2020): 1–6. http://dx.doi.org/10.23880/oajmb-16000163.

Texto completo da fonte
Resumo:
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, stimulated immune cells need to generate sufficient energy and biomolecules to support growth, proliferation and effector functions, including migration, cytotoxicity and production of cytokines. Thus, immune cells switch from oxidative phosphorylation to aerobic glycolysis, increasing their glucose uptake. A similar metabolic reprogramming has been described in endothelial cells which have the ability to interact with and modulate the function of immune cells and vice versa. Nonetheless, this complicated interplay between local environment, endothelial and immune cells metabolism, and immune functions remains incompletely understood. We analyze the metabolic reprogramming of endothelial and T cells during inflammation and we highlight some key components of this metabolic switch that can lead to the development of new therapeutics in chronic inflammatory disease.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gärtner, Roland, Petra Rank e Birgit Ander. "The role of iodine and δ-iodolactone in growth and apoptosis of malignant thyroid epithelial cells and breast cancer cells". HORMONES 9, n.º 1 (15 de janeiro de 2010): 60–66. http://dx.doi.org/10.14310/horm.2002.1254.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

J, Otsuka. "A Theoretical Study on the Cell Differentiation Forming Stem Cells in Higher Animals". Physical Science & Biophysics Journal 5, n.º 2 (2021): 1–10. http://dx.doi.org/10.23880/psbj-16000191.

Texto completo da fonte
Resumo:
The recent genome sequencing of multicellular diploid eukaryotes reveals an enlarged repertoire of protein genes for signal transmission but it is still difficult to elucidate the network of signal transmission to drive the life cycle of such an eukaryote only from biochemical and genetic studies. In the present paper, a theoretical study is carried out for the cell differentiation, the formation of stem cells and the growth from a child to the adult in the higher animal. With the intercellular and intracellular signal transmission in mind, the cell differentiation is theoretically derived from the process by the transition of proliferated cells from proliferation mode to differentiation mode and by both the long-range interaction between distinctive types of cells and the short-range interaction between the same types of cells. As the hierarchy of cell differentiation is advanced, the original types of self-reproducible cells are replaced by the self-reproducible cells returned from the cells differentiated already. The latter type of self-reproducible cells are marked with the signal specific to the preceding differentiation and become the stem cells for the next stage of cell differentiation. This situation is realized under the condition that the differentiation of cells occurs immediately after their proliferation in the development. The presence of stem cells in the respective lineages of differentiated cells strongly suggests another signal transmission for the growth of a child to a definite size of adult that the proliferation of stem cells in one lineage is activated by the signal from the differentiated cells in the other lineage(s) and is suppressed by the signal from the differentiated cells in its own lineage. This style of signal transmission also explains the metamorphosis and maturation of germ cells in higher animals.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Dai, Jinlu, Jacques Nor e Evan Keller. "Human Prostate cancer cells induce osteocalcin expression in the preosteoblast MC 3T3-E1 cell line through vascular endothelial growth factor (VEGF)". Japanese Journal of Urology 96, n.º 2 (2005): 154. http://dx.doi.org/10.5980/jpnjurol.96.154_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Aversa, Raffaella, Antonio Apicella, Francesco Tamburrino e Florian Ion Tiberiu Petrescu. "Mechanically Stimulated Osteoblast Cells Growth". American Journal of Engineering and Applied Sciences 11, n.º 2 (1 de fevereiro de 2018): 1023–36. http://dx.doi.org/10.3844/ajeassp.2018.1023.1036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

SATO, Yasufumi. "Endothelial Cells and Growth Factors". Journal of Japan Atherosclerosis Society 21, n.º 4 (1993): 329–36. http://dx.doi.org/10.5551/jat1973.21.4_329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Scheike, Thomas H. "Anisotropic Growth of Voronoi Cells". Advances in Applied Probability 26, n.º 1 (março de 1994): 43–53. http://dx.doi.org/10.2307/1427577.

Texto completo da fonte
Resumo:
This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Scheike, Thomas H. "Anisotropic Growth of Voronoi Cells". Advances in Applied Probability 26, n.º 01 (março de 1994): 43–53. http://dx.doi.org/10.1017/s0001867800025982.

Texto completo da fonte
Resumo:
This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Puro, Donald G. "Growth factors and Müller cells". Progress in Retinal and Eye Research 15, n.º 1 (janeiro de 1995): 89–101. http://dx.doi.org/10.1016/1350-9462(95)00004-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Paul, J. "Growth factors and stem cells". FEBS Letters 182, n.º 1 (11 de março de 1985): 211–12. http://dx.doi.org/10.1016/0014-5793(85)81192-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Jasmin, Claude, Vassilis Georgoulias, Florence Smadja-Joffe, Claude Boucheix, Caroline Le Bousse-Kerdiles, Michèle Allouche, Christian Cibert e Bruno Azzarone. "Autocrine growth of leukemic cells". Leukemia Research 14, n.º 8 (janeiro de 1990): 689–93. http://dx.doi.org/10.1016/0145-2126(90)90095-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Robinson, Richard. "GROWTH FACTORS AND STEM CELLS". Neurology Today 5, n.º 5 (maio de 2005): 42. http://dx.doi.org/10.1097/00132985-200505000-00010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Luce-Fedrow, Alison, Kevin R. Macaluso e Allen L. Richards. "Growth ofRickettsia felisinDrosophila melanogasterS2 Cells". Vector-Borne and Zoonotic Diseases 14, n.º 2 (fevereiro de 2014): 101–10. http://dx.doi.org/10.1089/vbz.2013.1370.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Huttunen, M. "Mast cells inhibit keratinocyte growth". Journal of the European Academy of Dermatology and Venereology 5, n.º 1 (outubro de 1995): S136—S137. http://dx.doi.org/10.1016/0926-9959(95)96317-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

UNSICKER, K., e K. KRIEGLSTEIN. "Growth factors in chromaffin cells". Progress in Neurobiology 48, n.º 4-5 (março de 1996): 307–24. http://dx.doi.org/10.1016/0301-0082(95)00045-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Atef Yekta, M., F. Verdonck, W. Van Den Broeck, BM Goddeeris, E. Cox e D. Vanroy. "Lactoferrin inhibits E. coli O157:H7 growth and attachment to intestinal epithelial cells". Veterinární Medicína 55, No. 8 (15 de setembro de 2010): 359–68. http://dx.doi.org/10.17221/2954-vetmed.

Texto completo da fonte
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 strains are associated with haemorraghic colitis and haemolytic uremic syndrome (HUS) in humans. Cattle are a reservoir of E. coli O157:H7. We studied the ability of bovine and human lactoferrin, two natural antimicrobial proteins present in milk, to inhibit E. coli O157:H7 growth and attachment to a human epithelial colorectal adenocarcinoma cell line (Caco-2). The direct antibacterial effect of bLF on E. coli O157:H7 was stronger than that of hLF. Nevertheless, both lactoferrins had bacteriostatic effects even at high concentrations (10 mg/ml), suggesting blocking of LF activity by a yet undefined bacterial defence mechanism. Additionally, both lactoferrins significantly inhibited E. coli O157:H7 attachment to Caco-2 cells. However, hLF was more effective than bLF, probably due to more efficient binding of bLF to intelectin present on human enterocytes leading to uptake and thus removal of bLF from the extracellular environment. Inhibition of bacterial attachment to Caco-2 cells was at least partly due to the catalytic effect of lactoferrins on the type III secreted proteins EspA and EspB
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Taetle, R. "Anti-epidermal growth factor and growth of human cells". Biomedicine & Pharmacotherapy 43, n.º 6 (janeiro de 1989): 459. http://dx.doi.org/10.1016/0753-3322(89)90255-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Schop, Deborah, Frank W. Janssen, Linda D. S. van Rijn, Hugo Fernandes, Rolf M. Bloem, Joost D. de Bruijn e Riemke van Dijkhuizen-Radersma. "Growth, Metabolism, and Growth Inhibitors of Mesenchymal Stem Cells". Tissue Engineering Part A 15, n.º 8 (agosto de 2009): 1877–86. http://dx.doi.org/10.1089/ten.tea.2008.0345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Shiota, G., D. B. Rhoads, T. C. Wang, T. Nakamura e E. V. Schmidt. "Hepatocyte growth factor inhibits growth of hepatocellular carcinoma cells." Proceedings of the National Academy of Sciences 89, n.º 1 (1 de janeiro de 1992): 373–77. http://dx.doi.org/10.1073/pnas.89.1.373.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Mizuno, K., O. Higuchi, J. N. Ihle e T. Nakamura. "Hepatocyte Growth Factor Stimulates Growth of Hematopoietic Progenitor Cells". Biochemical and Biophysical Research Communications 194, n.º 1 (julho de 1993): 178–86. http://dx.doi.org/10.1006/bbrc.1993.1801.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Moiseev, Ivan S., Sergej V. Lapin, Elena A. Surkova, Margarita Y. Lerner, Elena V. Babenko, Alexandra A. Sipol, Vladimir N. Vavilov e Boris V. Afanasyev. "Prognostic significance of vascular endothelial growth factor and circulating endothelial cells for early and late outcomes of allogeneic hematopoietic stem cell transplantation". Cellular Therapy and Transplantation 4, n.º 1-2 (2015): 38–46. http://dx.doi.org/10.18620/1866-8836-2015-4-1-2-38-46.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Bilyuk, A. A. "PT (II) AND PD (II) COMPLEXES INFLUENCE ON SPHEROIDS GROWTH OF BREAST CANCER CELLS". Biotechnologia Acta 10, n.º 1 (fevereiro de 2017): 61–67. http://dx.doi.org/10.15407/biotech10.01.061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

L, Mazini. "Growth Differentiation Factor 11 (GDF11)/Transforming Growth Factor - β (TGF - β)/Mesenchymal Stem Cells (MSCs) Balance: A Complicated Partnership in Skin Rejuvenation". Journal of Embryology & Stem Cell Research 3, n.º 2 (2019): 1–10. http://dx.doi.org/10.23880/jes-16000122.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kalluri, Haviryaji S. G., e Robert J. Dempsey. "Growth factors, stem cells, and stroke". Neurosurgical Focus 24, n.º 3-4 (março de 2008): E14. http://dx.doi.org/10.3171/foc/2008/24/3-4/e13.

Texto completo da fonte
Resumo:
✓ Postischemic neurogenesis has been identified as a compensatory mechanism to repair the damaged brain after stroke. Several factors are released by the ischemic tissue that are responsible for proliferation, differentiation, and migration of neural stem cells. An understanding of their roles may allow future therapies based on treatment with such factors. Although damaged cells release a variety of factors, some of them are stimulatory whereas some are inhibitory for neurogenesis. It is interesting to note that factors like insulin-like growth factor–I can induce proliferation in the presence of fibroblast growth factor–2 (FGF-2), and promote differentiation in the absence of FGF-2. Meanwhile, factors like transforming growth factor–β can induce the differentiation of neurons while inhibiting the proliferation of neural stem cells. Therefore, understanding the role of each factor in the process of neurogenesis will help physicians to enhance the endogenous response and improve the clinical outcome after stroke. In this article the authors discuss the role of growth factors and stem cells following stroke.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Sawada, Ken-Ichi. "Growth Characteristics of Myelodysplastic CD34+Cells". Leukemia & Lymphoma 29, n.º 1-2 (janeiro de 1998): 49–60. http://dx.doi.org/10.3109/10428199809058381.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Visani, G., R. M. Lemoli, P. Tosi, A. Dinota, C. Tassi, M. Fogli e M. Cavo. "In vitro growth of myeloma cells*". European Journal of Haematology 43, S51 (24 de abril de 2009): 43–46. http://dx.doi.org/10.1111/j.1600-0609.1989.tb01491.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Barnes, D. "Cells without growth factors commit suicide". Science 242, n.º 4885 (16 de dezembro de 1988): 1510–11. http://dx.doi.org/10.1126/science.3201239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Hays, E. F., S. Kitada, C. H. Uittenbogaart e J. R. Reeve. "Autocrine Growth of Murine Lymphoma Cells". JNCI Journal of the National Cancer Institute 80, n.º 2 (16 de março de 1988): 116–21. http://dx.doi.org/10.1093/jnci/80.2.116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

KARALIS, T. K., KONSTANTINOS T. KARALIS e KONSTANTINA N. PAPAVASILEIOY. "GROWTH OF MALIGNANT CELLS AND THERMODYNAMICS". Journal of Mechanics in Medicine and Biology 16, n.º 02 (março de 2016): 1650006. http://dx.doi.org/10.1142/s0219519416500068.

Texto completo da fonte
Resumo:
In the present paper, certain thermodynamic relations are considered to study tumor growth and how the mechanisms, responsible for the cell killing by temperature change in abnormal cells, can be estimated from direct measurements, during evolution of a tumor. The problem is considered in its most general form and the discussion focuses on how significant results can be estimated from: (i) The stress system acting on the tumor, tumor pressure and tumor volume changes measured by ultra-sonic computerized tomography, (ii) entropy change and entropy production, measured from the heat capacity profiles, and (iii) the chemical potential changes measured by fluorescent labeling techniques; all of them supported by other techniques based on histo-chemical and microscopic methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Rosengart, Todd K., Edgar G. Chedrawy, Gerald Patejunas e Mauricio Retuarto. "Vascular endothelial growth factor before cells". Journal of Thoracic and Cardiovascular Surgery 129, n.º 3 (março de 2005): 696. http://dx.doi.org/10.1016/j.jtcvs.2004.11.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Fraldi, Massimiliano, e Angelo R. Carotenuto. "Cells competition in tumor growth poroelasticity". Journal of the Mechanics and Physics of Solids 112 (março de 2018): 345–67. http://dx.doi.org/10.1016/j.jmps.2017.12.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Veiby, Ole P., Adel A. Mikhail e H. Ralph Snodgrass. "GROWTH FACTORS AND HEMATOPOIETIC STEM CELLS". Hematology/Oncology Clinics of North America 11, n.º 6 (dezembro de 1997): 1173–84. http://dx.doi.org/10.1016/s0889-8588(05)70487-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bump, Nancy J., e Victor A. Najjar. "Tuftsin stimulates growth of HL60 cells". FEBS Letters 226, n.º 2 (4 de janeiro de 1988): 303–6. http://dx.doi.org/10.1016/0014-5793(88)81444-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Jorgensen, Paul, e Mike Tyers. "How Cells Coordinate Growth and Division". Current Biology 14, n.º 23 (dezembro de 2004): R1014—R1027. http://dx.doi.org/10.1016/j.cub.2004.11.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Lipkin, M. "Growth and Development of Gastrointestinal Cells". Annual Review of Physiology 47, n.º 1 (outubro de 1985): 175–97. http://dx.doi.org/10.1146/annurev.ph.47.030185.001135.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

McCrum, Christopher L., e C. Thomas Vangsness. "Postmeniscectomy Meniscus Growth With Stem Cells". Sports Medicine and Arthroscopy Review 23, n.º 3 (setembro de 2015): 139–42. http://dx.doi.org/10.1097/jsa.0000000000000073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gaudet, P., P. Fey e R. Chisholm. "Growth and Maintenance of Dictyostelium Cells". Cold Spring Harbor Protocols 2008, n.º 12 (1 de dezembro de 2008): pdb.prot5099. http://dx.doi.org/10.1101/pdb.prot5099.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Martin, Bronwen, Randall Brenneman, Erin Golden, Tom Walent, Kevin G. Becker, Vinayakumar V. Prabhu, William Wood, Bruce Ladenheim, Jean-Lud Cadet e Stuart Maudsley. "Growth Factor Signals in Neural Cells". Journal of Biological Chemistry 284, n.º 4 (26 de novembro de 2008): 2493–511. http://dx.doi.org/10.1074/jbc.m804545200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Ebendal, Ted, Peter L�nnerberg, Geng Pei, Annika Kylberg, Klas Kullander, H�kan Persson e Lars Olson. "Engineering cells to secrete growth factors". Journal of Neurology 242, S1 (1994): S5—S7. http://dx.doi.org/10.1007/bf00939231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Ribatti, Domenico, e Enrico Crivellato. "Mast cells, angiogenesis, and tumour growth". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1822, n.º 1 (janeiro de 2012): 2–8. http://dx.doi.org/10.1016/j.bbadis.2010.11.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Pépin, Marie-France, Claude Chavarie e Jean Archambault. "Growth and immobilization oftripterygium wilfordiicultured cells". Biotechnology and Bioengineering 38, n.º 11 (20 de dezembro de 1991): 1285–91. http://dx.doi.org/10.1002/bit.260381105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Hu, Feihu, Xiu Wang, Gaofeng Liang, Lanxin Lv, Yanliang Zhu, Bo Sun e Zhongdang Xiao. "Effects of Epidermal Growth Factor and Basic Fibroblast Growth Factor on the Proliferation and Osteogenic and Neural Differentiation of Adipose-Derived Stem Cells". Cellular Reprogramming 15, n.º 3 (junho de 2013): 224–32. http://dx.doi.org/10.1089/cell.2012.0077.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Hulley, Bonnie J., Marybeth Hummel, Linda L. Cook, Brita K. Boyd e Sharon L. Wenger. "Trisomy 8 mosaicism: Selective growth advantage of normal cells vs. growth disadvantage of trisomy 8 cells". American Journal of Medical Genetics 116A, n.º 2 (19 de dezembro de 2002): 144–46. http://dx.doi.org/10.1002/ajmg.a.10651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia