Literatura científica selecionada sobre o tema "Cell state"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cell state".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cell state"
Holden, C. "STATE STEM CELL INITIATIVES: Most State Stem Cell Efforts Staying Afloat". Science 323, n.º 5922 (27 de março de 2009): 1660b—1661b. http://dx.doi.org/10.1126/science.323.5922.1660b.
Texto completo da fonteMishra, Dharma Niranjan. "Clinico- haematological Profile of Sickle Cell Disease and Sickle Cell BetaThalassaemia in the State of Odisha". Journal of Medical Science And clinical Research 05, n.º 06 (12 de junho de 2017): 23062–69. http://dx.doi.org/10.18535/jmscr/v5i6.44.
Texto completo da fonteJosé Mendes de Seixas, Falcondes, Juan Paulo Robles Balestero, Claudiner Mendes de Seixas, Fernando Lessa Tofoli e Grover Victor Torrico-Bascopé. "Bridgeless boost PFC converter using the three-state switching cell". Eletrônica de Potência 17, n.º 2 (1 de maio de 2012): 513–20. http://dx.doi.org/10.18618/rep.2012.2.513520.
Texto completo da fonteAalam, Syed Mohammed Musheer, Kannan Vrindavan Manian, Sumitha Prameela Bharathan, Thiyagaraj Mayuranathan e Shaji Ramachandran Velayudhan. "Identification of Stable OCT4+NANOG− State in Somatic Cell Reprogramming". Cellular Reprogramming 18, n.º 6 (dezembro de 2016): 367–68. http://dx.doi.org/10.1089/cell.2016.0018.
Texto completo da fontePauklin, Siim, e Ludovic Vallier. "The Cell-Cycle State of Stem Cells Determines Cell Fate Propensity". Cell 155, n.º 1 (setembro de 2013): 135–47. http://dx.doi.org/10.1016/j.cell.2013.08.031.
Texto completo da fontePauklin, Siim, e Ludovic Vallier. "The Cell-Cycle State of Stem Cells Determines Cell Fate Propensity". Cell 156, n.º 6 (março de 2014): 1338. http://dx.doi.org/10.1016/j.cell.2014.02.044.
Texto completo da fonteLai, Dongmei, Yifei Chen, Fangyuan Wang, Lizhen Jiang e Chunsheng Wei. "LKB1 Controls the Pluripotent State of Human Embryonic Stem Cells". Cellular Reprogramming 14, n.º 2 (abril de 2012): 164–70. http://dx.doi.org/10.1089/cell.2011.0068.
Texto completo da fonteSmaglik, Paul. "Stem-cell state lines". Nature 429, n.º 6994 (junho de 2004): 905. http://dx.doi.org/10.1038/nj6994-905a.
Texto completo da fonteVenugopal, V. "Solid state electrochemical cell". Progress in Crystal Growth and Characterization of Materials 45, n.º 1-2 (janeiro de 2002): 139–41. http://dx.doi.org/10.1016/s0960-8974(02)00039-6.
Texto completo da fonteMcNiven, M. A. "The solid state cell". Biology of the Cell 94, n.º 9 (dezembro de 2002): 555–56. http://dx.doi.org/10.1016/s0248-4900(02)01203-0.
Texto completo da fonteTeses / dissertações sobre o assunto "Cell state"
Arévalo, Bautista Jazmine Paola. "The role of stat3 phosphorylation state in clear cell renal cell carcinoma (ccRCC)". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669570.
Texto completo da fonteSTAT3 (signal transducer and activator of transcription 3) es un factor de transcripción latente que regula la transcripción de genes relacionados con procesos biológicos esenciales, tales como: diferenciación celular, proliferación, migración, inhibición de la apoptosis y supervivencia. La activación anormal de STAT3 ha sido relacionada con el desarrollo de cerca del 50% de todos los cánceres humanos, incluyendo el carcinoma renal de célula clara (ccRCC). Actualmente, las propiedades oncogénicas de STAT3 se atribuyen a la fosforilación de su Tyr705; sin embargo, recientemente, la fosforilación de su Ser727 ha surgido como un evento capaz de amplificar la actividad transcripcional de STAT3, aunada a actividades no genómicas que promueven el desarrollo del cáncer. Nuestro grupo fue uno de los pioneros en señalar la importancia de la fosforilación de la Ser727, al demostrar que los niveles de expresión de pSer727 en el núcleo (en muestras de tejidos de pacientes con ccRCC) correlacionaban con un mal pronóstico y baja supervivencia global. Dado que el ccRCC es el subtipo histológico de carcinoma renal más prevalente y letal, y los mecanismos subyacentes a su desarrollo aún no han sido determinados, el objetivo de este trabajo fue elucidar el rol del estado de fosforilación de STAT3 en el desarrollo del ccRCC, y específicamente, en estudiar la contribución de la pSer727 en la progresión tumoral. Para ello, generamos fosfomutantes simples y dobles de STAT3 (Tyr705Phe, Ser727Ala, Ser727Asp, Tyr705Phe/Ser727Ala, y Tyr705Phe/Ser727Asp) que fueron transducidas en líneas celulares humanas derivadas de ccRCC (769-P y 786-O) para evaluar su comportamiento funcional, así como la consecuente expresión génica diferencial a través de un análisis de microarray. Nuestros resultados demostraron que las mutantes de STAT3 que contenían una substitución fosfomimética para la Ser727 (Ser727Asp) promueven un fenotipo pro-tumoral in vivo de forma independiente de la Tyr705. Además, describimos que el estado de fosforilación global de STAT3 determina la expresión de diferentes subconjuntos de genes asociados a distintos procesos biológicos, siendo los genes dependientes de la pSer727, los más relacionados con procesos característicos del desarrollo del cáncer. En resumen, este trabajo constituye el primer análisis acerca del rol del estado de fosforilación global de STAT3 en el ccRCC, y demuestra que la pSer727 activa la señalización de STAT3 a través de la transcripción de un subconjunto específico de genes que son clínicamente relevantes como potenciales dianas terapéuticas y nuevos biomarcadores para el ccRCC.
The signal transducer and activator of transcription 3 (STAT3) is a latent transcription factor that regulates downstream genes involved in essential biological processes such as cell differentiation, proliferation, migration, apoptosis inhibition, and survival. The aberrant activation of STAT3 has been related to the development of near 50% of all human cancers including clear cell renal cell carcinoma (ccRCC). To date, the oncogenic properties of STAT3 are attributed to the phosphorylation of its Tyr705, however, the phosphorylation of its Ser727 has recently emerged as an event that enhances STAT3 transcriptional activity, in addition to non-genomic activities that promote cancer development. Our group was one of the pioneers in bringing the Ser727 phosphorylation to light by demonstrating that nuclear pSer727 expression levels, in tissue samples of ccRCC patients, correlated with poor prognosis and low overall survival. Since ccRCC is the most prevalent and lethal histological subtype of renal cell carcinoma (RCC) and the molecular mechanisms behind its tumorigenesis remain unclear, we aimed to elucidate the role of STAT3 phosphorylation state in ccRCC development, and especially the contribution of pSer727 to tumor progression. For that purpose, we generated simple and double STAT3 phosphomutants (Tyr705Phe, Ser727Ala, Ser727Asp, Tyr705Phe/Ser727Ala, and Tyr705Phe/Ser727Asp) transduced in human-derived ccRCC cell lines (769-P and 786-O), and we evaluated their functional behavior as well as their differential gene expression through microarray analysis. Our data demonstrated that STAT3 mutants carrying a phosphomimetic substitution for Ser727 (Ser727Asp) promote a pro-tumoral phenotype in vitro in a Tyr705-independent manner. Moreover, we describe that the overall STAT3 phosphorylation state determines the expression of different subsets of target genes associated with distinct biological processes, being pSer727-dependent genes the most related to cellular hallmarks of cancer development. In summary, the present study constitutes the first analysis on the role of overall STAT3 phosphorylation state in ccRCC and demonstrates that pSer727 activates STAT3 signaling through transcription of a specific subset of target genes that are clinically relevant as potential therapeutic targets and novel biomarkers for ccRCC.
Lu, Xibin, e 盧希彬. "Quantitative characterization of mouse embryonic stem cell state transition". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208049.
Texto completo da fonteNewman, Jamie Jennifer. "Regulation of gene expression and cell state in embryonic stem cells". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58526.
Texto completo da fonte"May 2010." Cataloged from PDF version of thesis.
Includes bibliographical references.
Cell state is established and maintained through the combined action of transcription factors, chromatin regulators and signaling pathways, which all contribute to a transcriptional regulatory circuitry. Embryonic stem (ES) cells are capable of self-renewal and can give rise to nearly all differentiated cell-types, making them an ideal system in which to address the challenges of understanding gene expression and cell state. Valuable insights into the control of cell state have been revealed by recent studies of the ES cell transcriptional regulatory circuitry. Here I present work contributing to the understanding of transcriptional regulatory mechanisms that control ES cell state, specifically signaling pathways and proteins that affect chromatin structure.
by Jamie J. Newman.
Ph.D.
Calegari, Federico, e Julieta Aprea. "Bioelectric State and Cell Cycle Control of Mammalian Neural Stem Cells". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-185623.
Texto completo da fonteCalegari, Federico, e Julieta Aprea. "Bioelectric State and Cell Cycle Control of Mammalian Neural Stem Cells". Sage-Hindawi, 2012. https://tud.qucosa.de/id/qucosa%3A27972.
Texto completo da fonteOrr, Simon Timothy. "Multinuclear solid-state NMR of fuel cell materials". Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/35532/.
Texto completo da fonteBryan, Andrea K. (Andrea Kristine). "Cell State Identication by Mass, Density, and volume". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67071.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 119-124).
Cell size is often overlooked in the drive to define molecular mechanisms, but as a basic physical property it is an integrator of the cell's metabolic rate and indicator of cell fate. Development of the Suspended Microchannel Resonator (SMR), a microfluidic mass measurement system, enables femtogram cell mass resolution, and the resistive pulse (Coulter) technique provides high-speed electronic readout of cell volume. With these tools, we developed four methods to measure cell density, the ratio of mass to volume. We first measure the average density of cell populations using the SMR and a Coulter counter. We observe that cell density increases prior to bud formation at the G1/S transition of budding yeast, which is consistent with previous measurements using density gradient centrifugation. To investigate the origin of this density increase, we use the SMR to measure buoyant mass in high density media and monitor relative density changes of growing yeast cells. We find that the density increase requires energy, function of the protein synthesis regulator TOR, passage through START, and an intact actin cytoskeleton. These techniques are suitable for most non-adherent cells and subcellular particles to characterize cell growth in a variety of applications. We next develop two platforms to measure single-cell mass, volume, and density. These properties are calculated from two SMR buoyant mass measurements, each in different density fluids. These measurements are achieved by serially connecting two SMR structures through a microchannel with an intermediate T-junction, such that a cell is measured by each SMR in different density fluids. Similar measurements can also be made with one SMR by reversing the SMR fluid flow after a cell is measured-each cell re-enters the SMR in a higher density fluid for a second measurement. We find that the intrinsic cell-to-cell density variation is nearly 100-fold smaller than the mass or volume variation, and by simultaneously measuring density and mass, we identify distinct subpopulations of diseased and healthy cells that are indistinguishable by mass or volume alone.
by Andrea K. Bryan.
Ph.D.
Fonseca, Aaron James. "State-Space Randles Cell Model for Instrument Calibration". Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/31790.
Texto completo da fonteWang, Peng. "Some improvements in state/parameter estimation using the cell-to-cell mapping technique /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402544591959.
Texto completo da fonteMcBride, Jared Adam. "Steady State Configurations of Cells Connected by Cadherin Sites". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6023.
Texto completo da fonteLivros sobre o assunto "Cell state"
Sammes, Nigel, Alevtina Smirnova e Oleksandr Vasylyev, eds. Fuel Cell Technologies: State and Perspectives. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/1-4020-3498-9.
Texto completo da fonteM, Sammes Nigel, Smirnova Alevtina, Vasylyev Oleksandr e North Atlantic Treaty Organization, eds. Fuel cell technologies: State and perspectives. Dordrecht: Springer, 2005.
Encontre o texto completo da fonteEmpire State Stem Cell Board. Empire state stem cell board strategic plan. Albany, N.Y: New York State Dept. of Health, 2008.
Encontre o texto completo da fonteWilliam, Negendank, e Edelmann Ludwig, eds. The state of water in the cell. AMF O'Hare, Chicago, IL, U.S.A: Scanning Microscopy International, 1988.
Encontre o texto completo da fonteGallagher, Helen Christine. Regulation of neural cell adhesion molecule polysialylation state. Dublin: University College Dublin, 1998.
Encontre o texto completo da fonteBlake, Levitt B., e Berkshire-Litchfield Environmental Council, eds. Cell towers: Wireless convenience or environmental hazard? : proceedings of the "Cell Towers Forum", State of the Science/State of the Law, December 2, 2000. Markham, Ont: Safe Goods/New Century Pub., 2001.
Encontre o texto completo da fonteGupta, Dharmendra K., José M. Palma e Francisco J. Corpas, eds. Redox State as a Central Regulator of Plant-Cell Stress Responses. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44081-1.
Texto completo da fonteHerrmann, Heinz. Cell biology: An inquiry into the nature of the living state. Cambridge: Harper & Row, 1989.
Encontre o texto completo da fonteAuditor, Missouri State, ed. Management of cellular telephones at state agencies. [Jefferson City, Mo.]: Missouri State Library, 2001.
Encontre o texto completo da fontePezeshki, Peyman. Use of cell cycle analysis in early state estimation and process control. Birmingham: University of Birmingham, 2002.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cell state"
Hsu, C. S. "Cell State Space and Simple Cell Mapping". In Cell-to-Cell Mapping, 85–97. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-3892-6_4.
Texto completo da fonteTsuchiya, Masa, Alessandro Giuliani e Paul Brazhnik. "From Cell States to Cell Fates: Control of Cell State Transitions". In Methods in Molecular Biology, 137–62. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3577-3_9.
Texto completo da fonteHsu, C. S. "Other Topics of Study Using the Cell State Space Concept". In Cell-to-Cell Mapping, 331–34. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-3892-6_14.
Texto completo da fonteHime, Gary R., e Helen E. Abud. "The Stem Cell State". In Transcriptional and Translational Regulation of Stem Cells, 1–4. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6621-1_1.
Texto completo da fonteSequeira, C. A. C. "D.C. Methods of Cell Characterization Part II: Definition of Full Cell/Battery Parameters". In Solid State Batteries, 241–60. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_16.
Texto completo da fonteAbraham, K. M. "Non-Electrical Techniques of Cell Characterization". In Solid State Batteries, 283–96. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_18.
Texto completo da fonteWillkomm, Lena, e Wilhelm Bloch. "State of the Art in Cell–Cell Fusion". In Methods in Molecular Biology, 1–19. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2703-6_1.
Texto completo da fonteSetter, Michael P. "A Warning for the Wagner Polarization Cell". In Solid State Microbatteries, 419–22. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2263-2_26.
Texto completo da fonteJossen, Valentin, Regine Eibl, Gilles Broccard e Dieter Eibl. "Single-Use Systems in Biopharmaceutical Manufacture: State of the Art and Recent Trends". In Cell Engineering, 3–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45669-5_1.
Texto completo da fonteTonezzer, M., D. Gutierrez e D. Vincenzi. "Luminescent Solar Concentrators - State of the Art and Future Perspectives". In Solar Cell Nanotechnology, 293–315. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cell state"
Acharya, Sayan, Aditya Ganguly, Ram Sarkar e Abin Jose. "Cell Cycle State Prediction Using Graph Neural Networks". In 2024 IEEE International Conference on Image Processing (ICIP), 2916–22. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10648030.
Texto completo da fonteSchwickert, David, Skirmantas Alisauskas, Nick Kschuev, Anne-Laure Calendron, Ayhan Tajalli Seifi, Giovanni Cirmi, Stefan Düsterer et al. "Sub-15 fs Jitter After Multi-Pass Cell Pulse Compression at the Beamline FL23 of the FLASH Facility". In Advanced Solid State Lasers, AW1A.4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/assl.2024.aw1a.4.
Texto completo da fonteKang, Jungmyung, Keonhee Cho, Sekeon Kim, Giseok Kim, Hyunjun Kim, Dongwook Seo, Sangyeop Baeck, Seiseung Yoon e Seong-Ook Jung. "A 14nm SRAM Using NMOS Header Assist Cell for Improved Write Ability and Reduced Cell Retention Leakage". In 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), 669–72. IEEE, 2024. http://dx.doi.org/10.1109/esserc62670.2024.10719479.
Texto completo da fonteWang, Ziyao, Warunya Röder, Tobias Heuermann, Philipp Gierschke, Yi Zhang, Maximilian Karst, Mathias Lenski, Lucas Eisenbach, Jan Rothhardt e Jens Limpert. "Multipass cell for mJ-level, sub-two cycle nonlinear pulse compression with >100W average power at 1.9 µm". In Advanced Solid State Lasers, AW1A.7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/assl.2024.aw1a.7.
Texto completo da fonteKraak, M., J. M. Koopmans e R. Nouta. "Cell Layout Library Parameterization". In 11th European Solid State Circuits Conference. IEEE, 1985. http://dx.doi.org/10.1109/esscirc.1985.5468100.
Texto completo da fonteHuang, Liang-Chi, Pen-Yi Chu, Ko-Cheng Lu, Wei-Cheng Kang, Bo-Hsun Juan, Tzu-Yin Chen, Bi-Xian Wu e Tzu-Hsuan Chang. "Logic Cell of CFET Based on Double-Cell-Height to Enhance Intra-Cell Connectivity". In 2024 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2024. http://dx.doi.org/10.7567/ssdm.2024.ps-01-03.
Texto completo da fonteEngelborghs, Yves, Marijke Somers e Hilde De Bruyn. "A pressure jump relaxation study of microtubules showing dynamic instability at steady state". In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40583.
Texto completo da fonteLapotko, Dmitry, Tat'yana Romanovskaya e Elena Gordiyko. "Photothermal response of live cell depends upon cell metabolic state". In International Symposium on Biomedical Optics, editado por Alexander A. Oraevsky. SPIE, 2002. http://dx.doi.org/10.1117/12.469854.
Texto completo da fonteKim, Y. J., J. G. Kang, B. Lee, G. S. Cho, S. K. Park e W. Y. Choi. "Abnormal Cell-to-Cell Interference of NAND Flash Memory". In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.a-1-2.
Texto completo da fonteWang, Lei. "Harnessing Synthetic Biology to Sense and Guide Cell-State Transitions". In International Conference on Cell Science and Regenerative Medicine, 56. United Research Forum, 2024. https://doi.org/10.51219/urforum.2024.lei-wang.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cell state"
Smyrl, W. H., B. B. Owens e H. S. White. Exploratory cell research and fundamental processes study in solid state electrochemical cells. Office of Scientific and Technical Information (OSTI), junho de 1990. http://dx.doi.org/10.2172/6396835.
Texto completo da fonteSteven Shaffer, Sean Kelly, Subhasish Mukerjee, David Schumann, Gail Geiger, Kevin Keegan, John Noetzel e Larry Chick. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL. Office of Scientific and Technical Information (OSTI), dezembro de 2003. http://dx.doi.org/10.2172/834990.
Texto completo da fonteSteven Shaffer, Sean Kelly, Subhasish Mukerjee, David Schumann, Gail Geiger, Kevin Keegan e Larry Chick. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL. Office of Scientific and Technical Information (OSTI), maio de 2004. http://dx.doi.org/10.2172/825673.
Texto completo da fonteKurtz, Jennifer, Sam Sprik e Genevieve Saur. State-of-the-Art Fuel Cell Voltage Durability Status (Presentation). Office of Scientific and Technical Information (OSTI), junho de 2012. http://dx.doi.org/10.2172/1045057.
Texto completo da fonteNguyen Minh. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program. Office of Scientific and Technical Information (OSTI), julho de 2006. http://dx.doi.org/10.2172/915745.
Texto completo da fonteUnknown. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM. Office of Scientific and Technical Information (OSTI), junho de 2003. http://dx.doi.org/10.2172/821427.
Texto completo da fonteNguyen Minh e Jim Powers. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM. Office of Scientific and Technical Information (OSTI), outubro de 2003. http://dx.doi.org/10.2172/821428.
Texto completo da fonteBlekhman, David. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES. Office of Scientific and Technical Information (OSTI), setembro de 2011. http://dx.doi.org/10.2172/1025719.
Texto completo da fonteKurtz, Jennfier, Huyen Dinh, Chris Ainscough e Genevieve Saur. State-of-the-art Fuel Cell Voltage Durability Status: 2015 Composite Data Products. Office of Scientific and Technical Information (OSTI), maio de 2015. http://dx.doi.org/10.2172/1226475.
Texto completo da fonteKurtz, J., S. Sprik, G. Saur, M. Peters, M. Post e C. Ainscough. State-of-the-Art Fuel Cell Voltage Durability Status: Spring 2013 Composite Data Products. Office of Scientific and Technical Information (OSTI), maio de 2013. http://dx.doi.org/10.2172/1080110.
Texto completo da fonte