Artigos de revistas sobre o tema "Cell-PCA"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cell-PCA".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
HAGHIGHI-NAJAFABADI, NASRIN, SHIMA FAYAZ, GHAZAL HADDAD, MAHBOUBEH BERIZI e PEZHMAN FARD-ESFAHANI. "MicroRNA 138 upregulation is associated with decreasing levels of CCND1 gene expression and promoting cell death in human prostate cancer cell lines". Romanian Biotechnological Letters 27, n.º 6/2022 (23 de abril de 2023): 3768–78. http://dx.doi.org/10.25083/rbl/27.6/3768.3778.
Texto completo da fonteLi, Weijian, Gaohuang Chen, Zhenyu Feng, Baoyi Zhu, Lilin Zhou, Yuying Zhang, Junyan Mai, Chonghe Jiang e Jianwen Zeng. "YTHDF1 promotes the proliferation, migration, and invasion of prostate cancer cells by regulating TRIM44". Genes & Genomics 43, n.º 12 (22 de outubro de 2021): 1413–21. http://dx.doi.org/10.1007/s13258-021-01175-z.
Texto completo da fonteSCHECHTER, NEIL L., NEIL L. FREDERICK, B. BERRIEN e SHOSHANA M. KATZ. "PCA FOR ADOLESCENTS IN SICKLE-CELL CRISIS". AJN, American Journal of Nursing 88, n.º 5 (maio de 1988): 719–24. http://dx.doi.org/10.1097/00000446-198805000-00028.
Texto completo da fonteChen, Zhong-Jun, You-Ji Yan, Hao Shen, Jia-Jie Zhou, Guang-Hua Yang, Yi-Xiang Liao, Jin-Min Zeng e Tao Yang. "miR-192 Is Overexpressed and Promotes Cell Proliferation in Prostate Cancer". Medical Principles and Practice 28, n.º 2 (13 de dezembro de 2018): 124–32. http://dx.doi.org/10.1159/000496206.
Texto completo da fonteFranko, Andras, Lucia Berti, Alke Guirguis, Jörg Hennenlotter, Robert Wagner, Marcus O. Scharpf, Martin Hrabĕ de Angelis et al. "Characterization of Hormone-Dependent Pathways in Six Human Prostate-Cancer Cell Lines: A Gene-Expression Study". Genes 11, n.º 10 (7 de outubro de 2020): 1174. http://dx.doi.org/10.3390/genes11101174.
Texto completo da fonteChien, Ju-Huei, Shan-Chih Lee, Kai-Fu Chang, Xiao-Fan Huang, Yi-Ting Chen e Nu-Man Tsai. "Extract of Pogostemon cablin Possesses Potent Anticancer Activity against Colorectal Cancer Cells In Vitro and In Vivo". Evidence-Based Complementary and Alternative Medicine 2020 (9 de setembro de 2020): 1–11. http://dx.doi.org/10.1155/2020/9758156.
Texto completo da fonteZhang, Cunming, Song Chen, Lide Song, Haibo Ye e Junwei Wang. "Krüppel-like factor 8 promotes aerobic glycolysis in prostate cancer cells by regulating AKT/mTOR signaling pathway". Tropical Journal of Pharmaceutical Research 19, n.º 10 (25 de novembro de 2020): 2091–96. http://dx.doi.org/10.4314/tjpr.v19i10.11.
Texto completo da fontePoluri, Raghavendra T. K., Virginie Paquette, Éric P. Allain, Camille Lafront, Charles Joly-Beauparlant, Cindy Weidmann, Arnaud Droit, Chantal Guillemette, Martin Pelletier e Étienne Audet-Walsh. "KLF5 and NFYA factors as novel regulators of prostate cancer cell metabolism". Endocrine-Related Cancer 28, n.º 4 (abril de 2021): 257–71. http://dx.doi.org/10.1530/erc-20-0504.
Texto completo da fonteWang, Qinghua, Zelin Liu, Guanzhong Zhai, Xi Yu, Shuai Ke, Haoren Shao e Jia Guo. "Overexpression of GATA5 Inhibits Prostate Cancer Progression by Regulating PLAGL2 via the FAK/PI3K/AKT Pathway". Cancers 14, n.º 9 (21 de abril de 2022): 2074. http://dx.doi.org/10.3390/cancers14092074.
Texto completo da fonteShi, Jian, Lian Zhao, Brittany Duncan, Jie Su, Jale Manzo, He Liu e Yuan-Shan Zhu. "Osteoblast-Induced Prostate Cancer Cell Migration and Invasion Is Mediated Through TGF-β1/SMAD2 Signal Pathway and Blocked by 17α-Estradiol". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A1029. http://dx.doi.org/10.1210/jendso/bvab048.2105.
Texto completo da fonteCheng, Siyuan, Lin Li e Xiuping Yu. "Abstract 1452: Big data analysis revealed signalling activity and key regulators in human prostate cancer cell lines". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 1452. http://dx.doi.org/10.1158/1538-7445.am2023-1452.
Texto completo da fonteZhang, Shuxian, Qingqing Li, Huixiao Yuan, Ling Ren, Xuyang Liang, Shouying Li, Shengxiang Lv e Hua Jiang. "Solute Carrier Family 35 Member F2 Regulates Cisplatin Resistance and Promotes Malignant Progression of Pancreatic Cancer by Regulating RNA Binding Motif Protein 14". Journal of Oncology 2022 (27 de maio de 2022): 1–8. http://dx.doi.org/10.1155/2022/5091154.
Texto completo da fonteMarkowitsch, Sascha D., Kira M. Juetter, Patricia Schupp, Kristine Hauschulte, Olesya Vakhrusheva, Kimberly Sue Slade, Anita Thomas et al. "Shikonin Reduces Growth of Docetaxel-Resistant Prostate Cancer Cells Mainly through Necroptosis". Cancers 13, n.º 4 (20 de fevereiro de 2021): 882. http://dx.doi.org/10.3390/cancers13040882.
Texto completo da fonteShen, Hao, Yong-Lian Guo, Guo-Hao Li, Wei Zhao e Ling Zhang. "Gene Expression Analysis Reveals Key Genes and Signalings Associated with the Prognosis of Prostate Cancer". Computational and Mathematical Methods in Medicine 2021 (28 de agosto de 2021): 1–13. http://dx.doi.org/10.1155/2021/9946015.
Texto completo da fonteWang, Peiyu, Ligang Zhang, Shuiping Yin, Yuchen Xu, Sheng Tai, L. i. Zhang e Chaozhao Liang. "hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis". Acta Biochimica et Biophysica Sinica 53, n.º 7 (6 de maio de 2021): 815–22. http://dx.doi.org/10.1093/abbs/gmab058.
Texto completo da fonteAbo, Muthana Al, Daniel J. George, Zefeng Wang, Steven R. Patierno, Jennifer A. Freedman e Alice Jiang. "Abstract 1554: LIM Domain 7 (LMO7) splice variant influences prostate cancer biology". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 1554. http://dx.doi.org/10.1158/1538-7445.am2024-1554.
Texto completo da fonteScott, Julia S., Reuben Young, Swati Irani, Jonas Dehairs, Stephen Blanksby, Johannes V. Swinnen, Zeyad D. Nassar e Lisa M. Butler. "Abstract A031: A fat lot of good: A novel monounsaturated fatty acid promotes prostate cancer growth and survival". Cancer Research 83, n.º 11_Supplement (2 de junho de 2023): A031. http://dx.doi.org/10.1158/1538-7445.prca2023-a031.
Texto completo da fonteMora, Benjamin C., Neil E. Fleshner, Laurence H. Klotz e Vasundara Venkateswaran. "The Effects of Serum from Prostate Cancer Patients with Elevated Body Mass Index on Prostate Cancer Cells in Vitro". Lipid Insights 8 (janeiro de 2015): LPI.S23135. http://dx.doi.org/10.4137/lpi.s23135.
Texto completo da fonteTorres-Estay, Verónica, Michalis Mastri, Spencer Rosario, Patricia Fuenzalida, Carolina E. Echeverría, Emilia Flores, Anica Watts et al. "The Differential Paracrine Role of the Endothelium in Prostate Cancer Cells". Cancers 14, n.º 19 (29 de setembro de 2022): 4750. http://dx.doi.org/10.3390/cancers14194750.
Texto completo da fonteSalamini-Montemurri, Martín, Ángel Vizoso-Vázquez, Aida Barreiro-Alonso, Lidia Lorenzo-Catoira, Esther Rodríguez-Belmonte, María-Esperanza Cerdán e Mónica Lamas-Maceiras. "The Effect of HMGB1 and HMGB2 on Transcriptional Regulation Differs in Neuroendocrine and Adenocarcinoma Models of Prostate Cancer". International Journal of Molecular Sciences 25, n.º 6 (7 de março de 2024): 3106. http://dx.doi.org/10.3390/ijms25063106.
Texto completo da fonteVanneste, Domien, Jens Staal, Mira Haegman, Yasmine Driege, Marieke Carels, Elien Van Nuffel, Pieter De Bleser, Yvan Saeys, Rudi Beyaert e Inna S. Afonina. "CARD14 Signalling Ensures Cell Survival and Cancer Associated Gene Expression in Prostate Cancer Cells". Biomedicines 10, n.º 8 (18 de agosto de 2022): 2008. http://dx.doi.org/10.3390/biomedicines10082008.
Texto completo da fonteLiu, Min, Chuanbing Xu, Huichao Dong, Dongshen Jia, Dongfang Hao, Ruozen Rong e Yao Peng. "Iron Oxide Nanoparticles Carrying microRNA-124 Promote Ferroptosis in Treatment of Prostate Cancer". Journal of Biomedical Nanotechnology 20, n.º 2 (1 de fevereiro de 2024): 224–30. http://dx.doi.org/10.1166/jbn.2024.3782.
Texto completo da fonteZhang, Qiuyang, Sen Liu, Bing Zhang, Elizabeth Norton, S. Michal Jazwinski, Oliver Sartor, Chad Steele e Asim B. Abdel-Mageed. "AGE-RELATED ELEVATED CD4+ T HELPER 17 CELL RESPONSE PROMOTES PROSTATE CANCER CELL GROWTH, MIGRATION, AND INVASION". Innovation in Aging 3, Supplement_1 (novembro de 2019): S879. http://dx.doi.org/10.1093/geroni/igz038.3221.
Texto completo da fonteMei, Qiyuan, Xiaohu Chen e Wei Liu. "Protocatechuic Acid Induces Apoptosis in Human Osteosarcoma Cells by Regulating P13K/AKT/ROS Pathway". Sains Malaysiana 51, n.º 4 (30 de abril de 2022): 1167–79. http://dx.doi.org/10.17576/jsm-2022-5104-18.
Texto completo da fonteChampagne, Audrey, Imene Chebra, Pallavi Jain, Cassandra Ringuette Goulet, Annie Lauzier, Antoine Guyon, Bertrand Neveu e Frédéric Pouliot. "An Extracellular Matrix Overlay Model for Bioluminescence Microscopy to Measure Single-Cell Heterogeneous Responses to Antiandrogens in Prostate Cancer Cells". Biosensors 14, n.º 4 (5 de abril de 2024): 175. http://dx.doi.org/10.3390/bios14040175.
Texto completo da fonteWan, Xinhai, Paul G. Corn, Jun Yang, Nallasivam Palanisamy, Michael W. Starbuck, Eleni Efstathiou, Elsa M. Li Ning Tapia et al. "Prostate cancer cell–stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases". Science Translational Medicine 6, n.º 252 (3 de setembro de 2014): 252ra122. http://dx.doi.org/10.1126/scitranslmed.3009332.
Texto completo da fonteSalemi, Michele, Filippo Fraggetta, Antonio Galia, Pietro Pepe, Laura Cimino, Rosita A. Condorelli e Aldo E. Calogero. "Cerebellar Degeneration-Related Autoantigen 1 (CDR1) Gene Expression in Prostate Cancer Cell Lines". International Journal of Biological Markers 29, n.º 3 (julho de 2014): 288–90. http://dx.doi.org/10.5301/jbm.5000062.
Texto completo da fonteDehghani, Mehdi, Sedigheh Kianpour, Ana Zangeneh e Zohreh Mostafavi-Pour. "CXCL12 Modulates Prostate Cancer Cell Adhesion by Altering the Levels or Activities ofβ1-Containing Integrins". International Journal of Cell Biology 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/981750.
Texto completo da fonteColon, Leslimar Rios, Juliet Chijioke, Suryakant Niture, Zainab Afzal, Qi Qi, Anvesha Srivastava, Malathi Ramalinga et al. "Abstract 5822: Leptin modulated microRNA-628-5p targets Jagged1 and inhibits prostate cancer hallmarks". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 5822. http://dx.doi.org/10.1158/1538-7445.am2022-5822.
Texto completo da fonteNiture, Suryakant, Lucas Tricoli, Qi Qi, Sashi Gadi, Kala Hayes e Deepak Kumar. "MicroRNA-99b-5p targets mTOR/AR axis, induces autophagy and inhibits prostate cancer cell proliferation". Tumor Biology 44, n.º 1 (5 de julho de 2022): 107–26. http://dx.doi.org/10.3233/tub-211568.
Texto completo da fonteZhang, Haiyan, e Haixiang Guo. "Long non-coding RNA NORAD induces cell proliferation and migration in prostate cancer". Journal of International Medical Research 47, n.º 8 (25 de julho de 2019): 3898–904. http://dx.doi.org/10.1177/0300060519862076.
Texto completo da fonteLi, Chang, Shuohui Gao, Xiaoping Li, Chang Li e Lianjun Ma. "Procaine Inhibits the Proliferation and Migration of Colon Cancer Cells Through Inactivation of the ERK/MAPK/FAK Pathways by Regulation of RhoA". Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 28, n.º 6 (16 de março de 2020): 675–79. http://dx.doi.org/10.3727/096504021x16137463165406.
Texto completo da fonteIonescu, Cristina-Anita, Mariana Aschie, Elena Matei, Georgeta Camelia Cozaru, Mariana Deacu, Anca Florentina Mitroi, Gabriela Isabela Baltatescu et al. "Characterization of the Tumor Microenvironment and the Biological Processes with a Role in Prostatic Tumorigenesis". Biomedicines 10, n.º 7 (12 de julho de 2022): 1672. http://dx.doi.org/10.3390/biomedicines10071672.
Texto completo da fonteQu, Yunyun, Xin Liu, Shuai Zong, Huanxin Sun, Shuang Liu e Yueran Zhao. "Protocatechualdehyde Inhibits the Osteoclast Differentiation of RAW264.7 and BMM Cells by Regulating NF-κB and MAPK Activity". BioMed Research International 2021 (16 de julho de 2021): 1–11. http://dx.doi.org/10.1155/2021/6108999.
Texto completo da fonteIshii, Kenichiro, Takeshi Sasaki, Kazuhiro Iguchi, Manabu Kato, Hideki Kanda, Yoshifumi Hirokawa, Kiminobu Arima, Masatoshi Watanabe e Yoshiki Sugimura. "Pirfenidone, an Anti-Fibrotic Drug, Suppresses the Growth of Human Prostate Cancer Cells by Inducing G1 Cell Cycle Arrest". Journal of Clinical Medicine 8, n.º 1 (4 de janeiro de 2019): 44. http://dx.doi.org/10.3390/jcm8010044.
Texto completo da fonteNoble, Amanda R., Karen Hogg, Rakesh Suman, Daniel M. Berney, Sylvain Bourgoin, Norman J. Maitland e Martin G. Rumsby. "Phospholipase D2 in prostate cancer: protein expression changes with Gleason score". British Journal of Cancer 121, n.º 12 (1 de novembro de 2019): 1016–26. http://dx.doi.org/10.1038/s41416-019-0610-7.
Texto completo da fonteKoh, Yoko, Matias A. Bustos, Jamie Moon, Rebecca Gross, Romela Irene Ramos, Suyeon Ryu, Jane Choe et al. "Urine Cell-Free MicroRNAs in Localized Prostate Cancer Patients". Cancers 14, n.º 10 (12 de maio de 2022): 2388. http://dx.doi.org/10.3390/cancers14102388.
Texto completo da fonteYang, Ning, Jiawen Wu, Tiancheng Zhang, Fan Yang, Jinyan Shao, Chang He e Liang Qin. "Clinical Evaluation of FOXO1 as a Tumor Suppressor in Prostate Cancer". Computational and Mathematical Methods in Medicine 2021 (13 de setembro de 2021): 1–8. http://dx.doi.org/10.1155/2021/8773423.
Texto completo da fonteYu, Kai-Jie, De-Yi Ji, Ming-Li Hsieh, Cheng-Keng Chuang, See-Tong Pang e Wen-Hui Weng. "EPA Modulates KLK Genes via miR-378: A Potential Therapy in Prostate Cancer". Cancers 14, n.º 11 (6 de junho de 2022): 2813. http://dx.doi.org/10.3390/cancers14112813.
Texto completo da fonteAdekoya, Timothy O., Nikia Smith, Ariel J. Thomas, Tonya S. Lane, Nija Burnette, Elizabeth J. Rivers, Yahui Li, Xiaoxin L. Chen e Ricardo M. Richardson. "Host versus cell-dependent effects of β-arrestin 1 expression in prostate tumorigenesis". Carcinogenesis 42, n.º 5 (12 de março de 2021): 772–83. http://dx.doi.org/10.1093/carcin/bgab021.
Texto completo da fonteBian, Xiaojie, Wenfeng Wang, Mierxiati Abudurexiti, Zhu Yao, Min Zhang, Ding-Wei Ye e Jianhua Wang. "Integration analysis of single-cell multi-omics in the prostate cancer ecosystem." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junho de 2023): e17046-e17046. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e17046.
Texto completo da fonteErb, Holger H. H., Regina V. Langlechner, Patrizia L. Moser, Florian Handle, Tineke Casneuf, Karin Verstraeten, Bettina Schlick et al. "IL6 sensitizes prostate cancer to the antiproliferative effect of IFNα2 through IRF9". Endocrine-Related Cancer 20, n.º 5 (2 de agosto de 2013): 677–89. http://dx.doi.org/10.1530/erc-13-0222.
Texto completo da fonteMéndez Palacios, Néstor, María Elena Ayala Escobar, Maximino Méndez Mendoza, Rubén Huerta Crispín, Octavio Guerrero Andrade, Javier Hernández Melández e Andrés Aragón Martínez. "Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion". Reproduction, Fertility and Development 28, n.º 6 (2016): 806. http://dx.doi.org/10.1071/rd13382.
Texto completo da fonteBacci, Lorenza, Aurora Aiello, Cristian Ripoli, Rossella Loria, Dario Pugliese, Francesco Pierconti, Dante Rotili et al. "H19-Dependent Transcriptional Regulation of β3 and β4 Integrins Upon Estrogen and Hypoxia Favors Metastatic Potential in Prostate Cancer". International Journal of Molecular Sciences 20, n.º 16 (17 de agosto de 2019): 4012. http://dx.doi.org/10.3390/ijms20164012.
Texto completo da fonteChen, Zheng, Tao Qi, Xiao-ping Qin, Jue Wang, Zhang-sen Huang, Xiao-yong Hu, Guo Chen, Li-jun Qu e Yu-min Zhuo. "Long Noncoding RNA SNHG12 Promotes Prostate Tumor Occurrence and Progression via AKT Regulation". BioMed Research International 2020 (22 de dezembro de 2020): 1–11. http://dx.doi.org/10.1155/2020/8812923.
Texto completo da fonteNamekawa, Takeshi, Kazuhiro Ikeda, Kuniko Horie-Inoue e Satoshi Inoue. "Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells". Cells 8, n.º 1 (20 de janeiro de 2019): 74. http://dx.doi.org/10.3390/cells8010074.
Texto completo da fonteSun, Xin-bo, Yong-wei Chen, Qi-sheng Yao, Xu-hua Chen, Min He, Cong-bo Chen, Yong Yang, Xiao-xin Gong e Li Huang. "MicroRNA-144 Suppresses Prostate Cancer Growth and Metastasis by Targeting EZH2". Technology in Cancer Research & Treatment 20 (1 de janeiro de 2021): 153303382198981. http://dx.doi.org/10.1177/1533033821989817.
Texto completo da fonteGarofano, Kaitlin, Kameron Rashid, Michael Smith, Christine Brantner, Sumanun Suwunnakorn, David Diemert, Olivia Gordon et al. "Prostate cancer cell-platelet bidirectional signaling promotes calcium mobilization, invasion and apoptotic resistance via distinct receptor-ligand pairs". Scientific Reports 13, n.º 1 (17 de fevereiro de 2023). http://dx.doi.org/10.1038/s41598-023-29450-x.
Texto completo da fonteAbdullah, K. M., Gunjan Sharma, Simran Takkar, Jyoti B. Kaushal, Ramesh Pothuraju, Bandana Chakravarti, Surinder K. Batra e Jawed A. Siddiqui. "α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation". Scientific Reports 14, n.º 1 (22 de fevereiro de 2024). http://dx.doi.org/10.1038/s41598-024-54479-x.
Texto completo da fonteLiao, Jinling, Qiong Song, Jie Li, Kechen Du, Yang Chen, Chunlin Zou e Zengnan Mo. "Carcinogenic effect of adenylosuccinate lyase (ADSL) in prostate cancer development and progression through the cell cycle pathway". Cancer Cell International 21, n.º 1 (6 de setembro de 2021). http://dx.doi.org/10.1186/s12935-021-02174-6.
Texto completo da fonte