Artigos de revistas sobre o tema "Cavitation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cavitation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Romanov, Alexey, Sergey Evdokimov e Vladimir Seliverstov. "Cavitation research results of hydroturbine impeller blades and their analysis". MATEC Web of Conferences 196 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201819602006.
Texto completo da fonteViitanen, Ville M., Tuomas Sipilä, Antonio Sánchez-Caja e Timo Siikonen. "Compressible Two-Phase Viscous Flow Investigations of Cavitation Dynamics for the ITTC Standard Cavitator". Applied Sciences 10, n.º 19 (7 de outubro de 2020): 6985. http://dx.doi.org/10.3390/app10196985.
Texto completo da fonteHu, Xiao, e Ye Gao. "Investigation of the Disk Cavitator Cavitating Flow Characteristics under Relatively High Cavitation Number". Applied Mechanics and Materials 29-32 (agosto de 2010): 2555–62. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.2555.
Texto completo da fonteSoyama, Hitoshi. "Cavitating Jet: A Review". Applied Sciences 10, n.º 20 (17 de outubro de 2020): 7280. http://dx.doi.org/10.3390/app10207280.
Texto completo da fonteWang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang e Weibin Zhang. "Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer". Journal of Marine Science and Engineering 10, n.º 6 (12 de junho de 2022): 806. http://dx.doi.org/10.3390/jmse10060806.
Texto completo da fonteLiu, Qian Kun, e Ye Gao. "Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies". Applied Mechanics and Materials 226-228 (novembro de 2012): 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.
Texto completo da fonteLee, Insu, Sunho Park, Woochan Seok e Shin Hyung Rhee. "A Study on the Cavitation Model for the Cavitating Flow Analysis around the Marine Propeller". Mathematical Problems in Engineering 2021 (17 de junho de 2021): 1–8. http://dx.doi.org/10.1155/2021/2423784.
Texto completo da fonteXu, Gaowei, Huimin Fang, Yumin Song e Wensheng Du. "Optimal Design and Analysis of Cavitating Law for Well-Cellar Cavitating Mechanism Based on MBD-DEM Bidirectional Coupling Model". Agriculture 13, n.º 1 (5 de janeiro de 2023): 142. http://dx.doi.org/10.3390/agriculture13010142.
Texto completo da fonteCui, Baoling, e Jie Chen. "Visual experiment and numerical simulation of cavitation instability in a high-speed inducer". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, n.º 4 (6 de agosto de 2019): 470–80. http://dx.doi.org/10.1177/0957650919867173.
Texto completo da fonteZHANG, YAO, XIANWU LUO, SHUHONG LIU e HONGYUAN XU. "A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES". Modern Physics Letters B 24, n.º 13 (30 de maio de 2010): 1467–70. http://dx.doi.org/10.1142/s0217984910023888.
Texto completo da fonteLin, Yuxing, Ebrahim Kadivar e Ould el Moctar. "Experimental Study of the Cavitation Effects on Hydrodynamic Behavior of a Circular Cylinder at Different Cavitation Regimes". Fluids 8, n.º 6 (23 de maio de 2023): 162. http://dx.doi.org/10.3390/fluids8060162.
Texto completo da fonteCai, Cindy X., John Choong, Sina Farsiu, Stephanie J. Chiu, Emily Y. Chew e Glenn J. Jaffe. "Retinal cavitations in macular telangiectasia type 2 (MacTel): longitudinal structure–function correlations". British Journal of Ophthalmology 105, n.º 1 (9 de março de 2020): 109–12. http://dx.doi.org/10.1136/bjophthalmol-2019-315416.
Texto completo da fonteDolgopolov, S. I. "Determining the coefficients of a hydrodynamic model of cavitating pumps of liquid-propellant rocket engines from their theoretical transfer matrices". Technical mechanics 2024, n.º 1 (11 de abril de 2024): 16–25. http://dx.doi.org/10.15407/itm2024.01.016.
Texto completo da fonteLu, L., J. Zou, X. Fu, X. D. Ruan, X. W. Du, S. Ryu e M. Ochiai. "Cavitating flow in non-circular opening spool valves with U-grooves". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, n.º 10 (12 de junho de 2009): 2297–307. http://dx.doi.org/10.1243/09544062jmes1504.
Texto completo da fonteGao, Bo, Pengming Guo, Ning Zhang, Zhong Li e Minguan Yang. "Experimental Investigation on Cavitating Flow Induced Vibration Characteristics of a Low Specific Speed Centrifugal Pump". Shock and Vibration 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6568930.
Texto completo da fonteZhao, Wei Guo, Xiao Xia He, Xiu Yong Wang e Yi Bin Li. "Numerical Simulation of Cavitation Flow in a Centrifugal Pump". Applied Mechanics and Materials 444-445 (outubro de 2013): 509–16. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.509.
Texto completo da fonteHuang, D. G., e Y. Q. Zhuang. "Temperature and cavitation". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, n.º 2 (1 de fevereiro de 2008): 207–11. http://dx.doi.org/10.1243/09544062jmes815.
Texto completo da fonteKHOO, B. C., e J. G. ZHENG. "THE NUMERICAL SIMULATION OF UNSTEADY CAVITATION EVOLUTION INDUCED BY PRESSURE WAVE". International Journal of Modern Physics: Conference Series 34 (janeiro de 2014): 1460374. http://dx.doi.org/10.1142/s2010194514603743.
Texto completo da fonteSoyama, Hitoshi, e Mitsuhiro Mikami. "Improvement of Fatigue Strength of Stainless Steel by Using a Cavitating Jet with an Associated Water Jet in Water". Key Engineering Materials 353-358 (setembro de 2007): 162–65. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.162.
Texto completo da fonteZhang, Hu, Jun Wang, Desheng Zhang, Weidong Shi e Jianbo Zang. "Numerical Analysis of the Effect of Cavitation on the Tip Leakage Vortex in an Axial-Flow Pump". Journal of Marine Science and Engineering 9, n.º 7 (16 de julho de 2021): 775. http://dx.doi.org/10.3390/jmse9070775.
Texto completo da fonteHong, Feng, Jianping Yuan, Banglun Zhou e Zhong Li. "Modeling of unsteady structure of sheet/cloud cavitation around a two-dimensional stationary hydrofoil". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231, n.º 3 (7 de outubro de 2015): 455–69. http://dx.doi.org/10.1177/0954408915607390.
Texto completo da fonteLi, Tao, Bin Liu, Jinzhi Zhou, Wenxuan Xi, Xiulan Huai e Hang Zhang. "A Comparative Study of Cavitation Characteristics of Nano-Fluid and Deionized Water in Micro-Channels". Micromachines 11, n.º 3 (16 de março de 2020): 310. http://dx.doi.org/10.3390/mi11030310.
Texto completo da fonteWei, Aibo, Shunhao Wang, Xu Gao, Limin Qiu, Lianyan Yu e Xiaobin Zhang. "Investigation of unsteady cryogenic cavitating flow and induced noise around a three-dimensional hydrofoil". Physics of Fluids 34, n.º 4 (abril de 2022): 042120. http://dx.doi.org/10.1063/5.0088092.
Texto completo da fonteDolgopolov, S. I. "Verification of a hydrodynamic model of a liquid-propellant rocket engine’s cavitating pumps using experimental and theoretical pump transfer matrices". Technical mechanics 2020, n.º 3 (15 de outubro de 2020): 18–29. http://dx.doi.org/10.15407/itm2020.03.018.
Texto completo da fonteLi, Hong, Zhenhua Shen, Nicholas Engen Pedersen e Christian Brix Jacobsen. "Experimental and unsteady numerical research of a high-specific-speed pump for part-load cavitation instability". Advances in Mechanical Engineering 11, n.º 3 (março de 2019): 168781401982893. http://dx.doi.org/10.1177/1687814019828932.
Texto completo da fonteAmromin, E. L. "STATE-OF-THE ART IN COMPUTATIONAL ANALYSIS OF CAVITATION INCEPTION AND ITS SCALE EFFECTS". International Journal of Maritime Engineering 164, A4 (3 de abril de 2023): 385–96. http://dx.doi.org/10.5750/ijme.v164ia4.814.
Texto completo da fonteJasionowski, R., W. Polkowski e D. Zasada. "Destruction Mechanism of ZnAl4 as Cast Alloy Subjected to Cavitational Erosion Using Different Laboratory Stands". Archives of Foundry Engineering 16, n.º 1 (1 de março de 2016): 19–24. http://dx.doi.org/10.1515/afe-2015-0096.
Texto completo da fonteRhee, Shin Hyung, Takafumi Kawamura e Huiying Li. "Propeller Cavitation Study Using an Unstructured Grid Based Navier-Stoker Solver". Journal of Fluids Engineering 127, n.º 5 (2 de maio de 2005): 986–94. http://dx.doi.org/10.1115/1.1989370.
Texto completo da fonteSoyama, Hitoshi. "High-Speed Observation of a Cavitating Jet in Air". Journal of Fluids Engineering 127, n.º 6 (14 de julho de 2005): 1095–101. http://dx.doi.org/10.1115/1.2060737.
Texto completo da fonteSoyama, H., J. D. Park e M. Saka. "Use of Cavitating Jet for Introducing Compressive Residual Stress". Journal of Manufacturing Science and Engineering 122, n.º 1 (1 de setembro de 1999): 83–89. http://dx.doi.org/10.1115/1.538911.
Texto completo da fonteJasionowski, Robert, Dariusz Zasada e Wojciech Polkowski. "The Evaluation of the Cavitational Damage in MgAl2Si Alloy Using Various Laboratory Stands". Solid State Phenomena 252 (julho de 2016): 61–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.252.61.
Texto completo da fonteWang, Zhe, Ruizhi Zhang, Jiajian Zhou e Xianwu Luo. "Cavitating flow investigation in low specific speed axial flow waterjet pumps". Journal of Physics: Conference Series 2217, n.º 1 (1 de abril de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2217/1/012008.
Texto completo da fonteLaborde, R., P. Chantrel e M. Mory. "Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump". Journal of Fluids Engineering 119, n.º 3 (1 de setembro de 1997): 680–85. http://dx.doi.org/10.1115/1.2819298.
Texto completo da fonteZhang, De-Sheng, Hai-Yu Wang, Lin-Lin Geng e Wei-Dong Shi. "Detached eddy simulation of unsteady cavitation and pressure fluctuation around 3-D NACA66 hydrofoil". Thermal Science 19, n.º 4 (2015): 1231–34. http://dx.doi.org/10.2298/tsci1504231z.
Texto completo da fonteMajor Md. Nur-E-Mostafa, Eare Md Morshed Alam e Mohammad Monir Uddin. "Numerical Analysis of Cavitating Flow on Hydrofoil". MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY 10 (29 de dezembro de 2022): 11–19. http://dx.doi.org/10.47981/j.mijst.10(03)2022.351(11-19).
Texto completo da fonteMacodiyo, D. O., H. Soyama e Masumi Saka. "Effect of Cavitation Number on the Improvement of Fatigue Strength of Carburized Steel Using Cavitation Shotless Peening". Key Engineering Materials 261-263 (abril de 2004): 1245–50. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.1245.
Texto completo da fontePodnar, Andrej, Marko Hočevar, Lovrenc Novak e Matevž Dular. "Analysis of Bulb Turbine Hydrofoil Cavitation". Applied Sciences 11, n.º 6 (16 de março de 2021): 2639. http://dx.doi.org/10.3390/app11062639.
Texto completo da fonteXing, Tao, Zhenyin Li e Steven H. Frankel. "Numerical Simulation of Vortex Cavitation in a Three-Dimensional Submerged Transitional Jet". Journal of Fluids Engineering 127, n.º 4 (7 de abril de 2005): 714–25. http://dx.doi.org/10.1115/1.1976742.
Texto completo da fonteKlenow, B., e A. Brown. "Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid". Shock and Vibration 17, n.º 2 (2010): 137–59. http://dx.doi.org/10.1155/2010/904390.
Texto completo da fonteSon, Min, Michael Börner, Wolfgang Armbruster e Justin S. Hardi. "Orifice Flow Dynamics in a Rocket Injector as an Excitation Source of Injector-Driven Combustion Instabilities". Aerospace 10, n.º 5 (15 de maio de 2023): 452. http://dx.doi.org/10.3390/aerospace10050452.
Texto completo da fonteSzantyr, J., P. Flaszyński, K. Tesch, W. Suchecki e S. Alabrudziński. "An Experimental and Numerical Study of Tip Vortex Cavitation". Polish Maritime Research 18, n.º 4 (1 de janeiro de 2011): 14–22. http://dx.doi.org/10.2478/v10012-011-0021-z.
Texto completo da fonteOrekhov, Genrikh. "Cavitation in swirling flows of hydraulic spillways". E3S Web of Conferences 91 (2019): 07022. http://dx.doi.org/10.1051/e3sconf/20199107022.
Texto completo da fonteYang, Yongfei, Gaowei Wang, Weidong Shi, Wei Li, Leilei Ji e Hongliang Wang. "Turbulence Characteristics in the Mixing Layer of a Submerged Cavitating Jet at High Reynolds Numbers". Sustainability 14, n.º 19 (22 de setembro de 2022): 11963. http://dx.doi.org/10.3390/su141911963.
Texto completo da fonteHatzissawidis, G., L. Kerres, G. J. Ludwig e P. F. Pelz. "Spatiotemporal analysis of sheet and cloud cavitation and its damage potential". IOP Conference Series: Earth and Environmental Science 1079, n.º 1 (1 de setembro de 2022): 012046. http://dx.doi.org/10.1088/1755-1315/1079/1/012046.
Texto completo da fonteZhang, Feng Hua, Nian Li e Chuan Lin Tang. "Design of Choking Cavitator and its Feasibility Study in Wastewater Treatment". Applied Mechanics and Materials 535 (fevereiro de 2014): 298–308. http://dx.doi.org/10.4028/www.scientific.net/amm.535.298.
Texto completo da fonteLiu, Cheng, Qingdong Yan e Houston G. Wood. "Numerical investigation of passive cavitation control using a slot on a three-dimensional hydrofoil". International Journal of Numerical Methods for Heat & Fluid Flow 30, n.º 7 (7 de novembro de 2019): 3585–605. http://dx.doi.org/10.1108/hff-05-2019-0395.
Texto completo da fonteWu, Kaipeng, Asad Ali, Changhong Feng, Qiaorui Si, Qian Chen e Chunhao Shen. "Numerical Study on the Cavitation Characteristics of Micro Automotive Electronic Pumps under Thermodynamic Effect". Micromachines 13, n.º 7 (1 de julho de 2022): 1063. http://dx.doi.org/10.3390/mi13071063.
Texto completo da fonteLi, Dawe, Jiangbo Wen, Ning Ge, Guihua Han, Yipeng Zhu e Chengjun Wang. "Study of the Mechanism of Cavitation in Inner-Hole Rotating Cavitators". Journal of Physics: Conference Series 2660, n.º 1 (1 de dezembro de 2023): 012038. http://dx.doi.org/10.1088/1742-6596/2660/1/012038.
Texto completo da fonteMeng, W. J., C. Lei, W. T. Su e B. Li. "Study on microchannel cavitation phenomena based on experiment and simulation". Journal of Physics: Conference Series 2707, n.º 1 (1 de fevereiro de 2024): 012126. http://dx.doi.org/10.1088/1742-6596/2707/1/012126.
Texto completo da fonteKumano, H., H. Soyama e Masumi Saka. "Gettering of Cu in Silicon Wafer by Using Cavitation Impacts". Key Engineering Materials 261-263 (abril de 2004): 1409–14. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.1409.
Texto completo da fonte