Artigos de revistas sobre o tema "Cavitation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cavitation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Romanov, Alexey, Sergey Evdokimov e Vladimir Seliverstov. "Cavitation research results of hydroturbine impeller blades and their analysis". MATEC Web of Conferences 196 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201819602006.
Texto completo da fonteViitanen, Ville M., Tuomas Sipilä, Antonio Sánchez-Caja e Timo Siikonen. "Compressible Two-Phase Viscous Flow Investigations of Cavitation Dynamics for the ITTC Standard Cavitator". Applied Sciences 10, n.º 19 (7 de outubro de 2020): 6985. http://dx.doi.org/10.3390/app10196985.
Texto completo da fonteHu, Xiao, e Ye Gao. "Investigation of the Disk Cavitator Cavitating Flow Characteristics under Relatively High Cavitation Number". Applied Mechanics and Materials 29-32 (agosto de 2010): 2555–62. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.2555.
Texto completo da fonteSoyama, Hitoshi. "Cavitating Jet: A Review". Applied Sciences 10, n.º 20 (17 de outubro de 2020): 7280. http://dx.doi.org/10.3390/app10207280.
Texto completo da fonteWang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang e Weibin Zhang. "Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer". Journal of Marine Science and Engineering 10, n.º 6 (12 de junho de 2022): 806. http://dx.doi.org/10.3390/jmse10060806.
Texto completo da fonteLiu, Qian Kun, e Ye Gao. "Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies". Applied Mechanics and Materials 226-228 (novembro de 2012): 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.
Texto completo da fonteQi, Xiaobin, Fangchao Xia, Jiawen Wang e Huan Liu. "Research on the influence of cavitator configuration on the cavitation flow characteristics around projectiles". Journal of Physics: Conference Series 2891, n.º 9 (1 de dezembro de 2024): 092030. https://doi.org/10.1088/1742-6596/2891/9/092030.
Texto completo da fonteLee, Insu, Sunho Park, Woochan Seok e Shin Hyung Rhee. "A Study on the Cavitation Model for the Cavitating Flow Analysis around the Marine Propeller". Mathematical Problems in Engineering 2021 (17 de junho de 2021): 1–8. http://dx.doi.org/10.1155/2021/2423784.
Texto completo da fonteXu, Gaowei, Huimin Fang, Yumin Song e Wensheng Du. "Optimal Design and Analysis of Cavitating Law for Well-Cellar Cavitating Mechanism Based on MBD-DEM Bidirectional Coupling Model". Agriculture 13, n.º 1 (5 de janeiro de 2023): 142. http://dx.doi.org/10.3390/agriculture13010142.
Texto completo da fonteCui, Baoling, e Jie Chen. "Visual experiment and numerical simulation of cavitation instability in a high-speed inducer". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, n.º 4 (6 de agosto de 2019): 470–80. http://dx.doi.org/10.1177/0957650919867173.
Texto completo da fonteZHANG, YAO, XIANWU LUO, SHUHONG LIU e HONGYUAN XU. "A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES". Modern Physics Letters B 24, n.º 13 (30 de maio de 2010): 1467–70. http://dx.doi.org/10.1142/s0217984910023888.
Texto completo da fonteZhang, Haida, Chenxing Fan, Luyao Wang, Wenjun Lu e Deng Li. "The Generation Methods and Applications of Cavitating Jet by Using Bubble Collapse Energy". Energies 17, n.º 23 (25 de novembro de 2024): 5902. http://dx.doi.org/10.3390/en17235902.
Texto completo da fonteLin, Yuxing, Ebrahim Kadivar e Ould el Moctar. "Experimental Study of the Cavitation Effects on Hydrodynamic Behavior of a Circular Cylinder at Different Cavitation Regimes". Fluids 8, n.º 6 (23 de maio de 2023): 162. http://dx.doi.org/10.3390/fluids8060162.
Texto completo da fonteCai, Cindy X., John Choong, Sina Farsiu, Stephanie J. Chiu, Emily Y. Chew e Glenn J. Jaffe. "Retinal cavitations in macular telangiectasia type 2 (MacTel): longitudinal structure–function correlations". British Journal of Ophthalmology 105, n.º 1 (9 de março de 2020): 109–12. http://dx.doi.org/10.1136/bjophthalmol-2019-315416.
Texto completo da fonteDolgopolov, S. I. "Determining the coefficients of a hydrodynamic model of cavitating pumps of liquid-propellant rocket engines from their theoretical transfer matrices". Technical mechanics 2024, n.º 1 (11 de abril de 2024): 16–25. http://dx.doi.org/10.15407/itm2024.01.016.
Texto completo da fonteLu, L., J. Zou, X. Fu, X. D. Ruan, X. W. Du, S. Ryu e M. Ochiai. "Cavitating flow in non-circular opening spool valves with U-grooves". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, n.º 10 (12 de junho de 2009): 2297–307. http://dx.doi.org/10.1243/09544062jmes1504.
Texto completo da fonteGao, Bo, Pengming Guo, Ning Zhang, Zhong Li e Minguan Yang. "Experimental Investigation on Cavitating Flow Induced Vibration Characteristics of a Low Specific Speed Centrifugal Pump". Shock and Vibration 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6568930.
Texto completo da fonteShen, Xi, Haoran Wu, Gang Yang, Rui Tang, Chenxin Chang, Bin Xu, Suben Lin e Desheng Zhang. "Experimental Study on the Classification and Evolution of the Tip Cavitation Morphology in Axial Waterjet Pumps with Two Different Blade Numbers". Journal of Marine Science and Engineering 12, n.º 11 (23 de outubro de 2024): 1898. http://dx.doi.org/10.3390/jmse12111898.
Texto completo da fonteZhao, Wei Guo, Xiao Xia He, Xiu Yong Wang e Yi Bin Li. "Numerical Simulation of Cavitation Flow in a Centrifugal Pump". Applied Mechanics and Materials 444-445 (outubro de 2013): 509–16. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.509.
Texto completo da fonteHuang, D. G., e Y. Q. Zhuang. "Temperature and cavitation". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, n.º 2 (1 de fevereiro de 2008): 207–11. http://dx.doi.org/10.1243/09544062jmes815.
Texto completo da fonteKHOO, B. C., e J. G. ZHENG. "THE NUMERICAL SIMULATION OF UNSTEADY CAVITATION EVOLUTION INDUCED BY PRESSURE WAVE". International Journal of Modern Physics: Conference Series 34 (janeiro de 2014): 1460374. http://dx.doi.org/10.1142/s2010194514603743.
Texto completo da fonteSoyama, Hitoshi, e Mitsuhiro Mikami. "Improvement of Fatigue Strength of Stainless Steel by Using a Cavitating Jet with an Associated Water Jet in Water". Key Engineering Materials 353-358 (setembro de 2007): 162–65. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.162.
Texto completo da fonteZhang, Hu, Jun Wang, Desheng Zhang, Weidong Shi e Jianbo Zang. "Numerical Analysis of the Effect of Cavitation on the Tip Leakage Vortex in an Axial-Flow Pump". Journal of Marine Science and Engineering 9, n.º 7 (16 de julho de 2021): 775. http://dx.doi.org/10.3390/jmse9070775.
Texto completo da fonteHong, Feng, Jianping Yuan, Banglun Zhou e Zhong Li. "Modeling of unsteady structure of sheet/cloud cavitation around a two-dimensional stationary hydrofoil". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231, n.º 3 (7 de outubro de 2015): 455–69. http://dx.doi.org/10.1177/0954408915607390.
Texto completo da fonteWei, Aibo, Shunhao Wang, Xu Gao, Limin Qiu, Lianyan Yu e Xiaobin Zhang. "Investigation of unsteady cryogenic cavitating flow and induced noise around a three-dimensional hydrofoil". Physics of Fluids 34, n.º 4 (abril de 2022): 042120. http://dx.doi.org/10.1063/5.0088092.
Texto completo da fonteLi, Tao, Bin Liu, Jinzhi Zhou, Wenxuan Xi, Xiulan Huai e Hang Zhang. "A Comparative Study of Cavitation Characteristics of Nano-Fluid and Deionized Water in Micro-Channels". Micromachines 11, n.º 3 (16 de março de 2020): 310. http://dx.doi.org/10.3390/mi11030310.
Texto completo da fonteDolgopolov, S. I. "Verification of a hydrodynamic model of a liquid-propellant rocket engine’s cavitating pumps using experimental and theoretical pump transfer matrices". Technical mechanics 2020, n.º 3 (15 de outubro de 2020): 18–29. http://dx.doi.org/10.15407/itm2020.03.018.
Texto completo da fonteLi, Hong, Zhenhua Shen, Nicholas Engen Pedersen e Christian Brix Jacobsen. "Experimental and unsteady numerical research of a high-specific-speed pump for part-load cavitation instability". Advances in Mechanical Engineering 11, n.º 3 (março de 2019): 168781401982893. http://dx.doi.org/10.1177/1687814019828932.
Texto completo da fonteAmromin, E. L. "STATE-OF-THE ART IN COMPUTATIONAL ANALYSIS OF CAVITATION INCEPTION AND ITS SCALE EFFECTS". International Journal of Maritime Engineering 164, A4 (3 de abril de 2023): 385–96. http://dx.doi.org/10.5750/ijme.v164ia4.814.
Texto completo da fonteJasionowski, R., W. Polkowski e D. Zasada. "Destruction Mechanism of ZnAl4 as Cast Alloy Subjected to Cavitational Erosion Using Different Laboratory Stands". Archives of Foundry Engineering 16, n.º 1 (1 de março de 2016): 19–24. http://dx.doi.org/10.1515/afe-2015-0096.
Texto completo da fonteRhee, Shin Hyung, Takafumi Kawamura e Huiying Li. "Propeller Cavitation Study Using an Unstructured Grid Based Navier-Stoker Solver". Journal of Fluids Engineering 127, n.º 5 (2 de maio de 2005): 986–94. http://dx.doi.org/10.1115/1.1989370.
Texto completo da fonteSoyama, Hitoshi. "High-Speed Observation of a Cavitating Jet in Air". Journal of Fluids Engineering 127, n.º 6 (14 de julho de 2005): 1095–101. http://dx.doi.org/10.1115/1.2060737.
Texto completo da fonteSoyama, H., J. D. Park e M. Saka. "Use of Cavitating Jet for Introducing Compressive Residual Stress". Journal of Manufacturing Science and Engineering 122, n.º 1 (1 de setembro de 1999): 83–89. http://dx.doi.org/10.1115/1.538911.
Texto completo da fonteJasionowski, Robert, Dariusz Zasada e Wojciech Polkowski. "The Evaluation of the Cavitational Damage in MgAl2Si Alloy Using Various Laboratory Stands". Solid State Phenomena 252 (julho de 2016): 61–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.252.61.
Texto completo da fonteWang, Zhe, Ruizhi Zhang, Jiajian Zhou e Xianwu Luo. "Cavitating flow investigation in low specific speed axial flow waterjet pumps". Journal of Physics: Conference Series 2217, n.º 1 (1 de abril de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2217/1/012008.
Texto completo da fonteLaborde, R., P. Chantrel e M. Mory. "Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump". Journal of Fluids Engineering 119, n.º 3 (1 de setembro de 1997): 680–85. http://dx.doi.org/10.1115/1.2819298.
Texto completo da fonteZhang, De-Sheng, Hai-Yu Wang, Lin-Lin Geng e Wei-Dong Shi. "Detached eddy simulation of unsteady cavitation and pressure fluctuation around 3-D NACA66 hydrofoil". Thermal Science 19, n.º 4 (2015): 1231–34. http://dx.doi.org/10.2298/tsci1504231z.
Texto completo da fonteMajor Md. Nur-E-Mostafa, Eare Md Morshed Alam e Mohammad Monir Uddin. "Numerical Analysis of Cavitating Flow on Hydrofoil". MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY 10 (29 de dezembro de 2022): 11–19. http://dx.doi.org/10.47981/j.mijst.10(03)2022.351(11-19).
Texto completo da fonteMacodiyo, D. O., H. Soyama e Masumi Saka. "Effect of Cavitation Number on the Improvement of Fatigue Strength of Carburized Steel Using Cavitation Shotless Peening". Key Engineering Materials 261-263 (abril de 2004): 1245–50. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.1245.
Texto completo da fontePodnar, Andrej, Marko Hočevar, Lovrenc Novak e Matevž Dular. "Analysis of Bulb Turbine Hydrofoil Cavitation". Applied Sciences 11, n.º 6 (16 de março de 2021): 2639. http://dx.doi.org/10.3390/app11062639.
Texto completo da fonteXing, Tao, Zhenyin Li e Steven H. Frankel. "Numerical Simulation of Vortex Cavitation in a Three-Dimensional Submerged Transitional Jet". Journal of Fluids Engineering 127, n.º 4 (7 de abril de 2005): 714–25. http://dx.doi.org/10.1115/1.1976742.
Texto completo da fonteKlenow, B., e A. Brown. "Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid". Shock and Vibration 17, n.º 2 (2010): 137–59. http://dx.doi.org/10.1155/2010/904390.
Texto completo da fonteSon, Min, Michael Börner, Wolfgang Armbruster e Justin S. Hardi. "Orifice Flow Dynamics in a Rocket Injector as an Excitation Source of Injector-Driven Combustion Instabilities". Aerospace 10, n.º 5 (15 de maio de 2023): 452. http://dx.doi.org/10.3390/aerospace10050452.
Texto completo da fonteSzantyr, J., P. Flaszyński, K. Tesch, W. Suchecki e S. Alabrudziński. "An Experimental and Numerical Study of Tip Vortex Cavitation". Polish Maritime Research 18, n.º 4 (1 de janeiro de 2011): 14–22. http://dx.doi.org/10.2478/v10012-011-0021-z.
Texto completo da fonteOrekhov, Genrikh. "Cavitation in swirling flows of hydraulic spillways". E3S Web of Conferences 91 (2019): 07022. http://dx.doi.org/10.1051/e3sconf/20199107022.
Texto completo da fonteYang, Yongfei, Gaowei Wang, Weidong Shi, Wei Li, Leilei Ji e Hongliang Wang. "Turbulence Characteristics in the Mixing Layer of a Submerged Cavitating Jet at High Reynolds Numbers". Sustainability 14, n.º 19 (22 de setembro de 2022): 11963. http://dx.doi.org/10.3390/su141911963.
Texto completo da fonteHatzissawidis, G., L. Kerres, G. J. Ludwig e P. F. Pelz. "Spatiotemporal analysis of sheet and cloud cavitation and its damage potential". IOP Conference Series: Earth and Environmental Science 1079, n.º 1 (1 de setembro de 2022): 012046. http://dx.doi.org/10.1088/1755-1315/1079/1/012046.
Texto completo da fonteZhang, Feng Hua, Nian Li e Chuan Lin Tang. "Design of Choking Cavitator and its Feasibility Study in Wastewater Treatment". Applied Mechanics and Materials 535 (fevereiro de 2014): 298–308. http://dx.doi.org/10.4028/www.scientific.net/amm.535.298.
Texto completo da fonteLiu, Cheng, Qingdong Yan e Houston G. Wood. "Numerical investigation of passive cavitation control using a slot on a three-dimensional hydrofoil". International Journal of Numerical Methods for Heat & Fluid Flow 30, n.º 7 (7 de novembro de 2019): 3585–605. http://dx.doi.org/10.1108/hff-05-2019-0395.
Texto completo da fonteDolgopolov, S. I. "Experiment-and-calculation determination of the coefficients appearing in a mathematical model of cavitating pumps of liquid-propellant rocket engines". Technical mechanics 2024, n.º 3 (30 de outubro de 2024): 67–85. http://dx.doi.org/10.15407/itm2024.03.067.
Texto completo da fonte