Literatura científica selecionada sobre o tema "Cavitation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cavitation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cavitation"
Romanov, Alexey, Sergey Evdokimov e Vladimir Seliverstov. "Cavitation research results of hydroturbine impeller blades and their analysis". MATEC Web of Conferences 196 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201819602006.
Texto completo da fonteViitanen, Ville M., Tuomas Sipilä, Antonio Sánchez-Caja e Timo Siikonen. "Compressible Two-Phase Viscous Flow Investigations of Cavitation Dynamics for the ITTC Standard Cavitator". Applied Sciences 10, n.º 19 (7 de outubro de 2020): 6985. http://dx.doi.org/10.3390/app10196985.
Texto completo da fonteHu, Xiao, e Ye Gao. "Investigation of the Disk Cavitator Cavitating Flow Characteristics under Relatively High Cavitation Number". Applied Mechanics and Materials 29-32 (agosto de 2010): 2555–62. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.2555.
Texto completo da fonteSoyama, Hitoshi. "Cavitating Jet: A Review". Applied Sciences 10, n.º 20 (17 de outubro de 2020): 7280. http://dx.doi.org/10.3390/app10207280.
Texto completo da fonteWang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang e Weibin Zhang. "Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer". Journal of Marine Science and Engineering 10, n.º 6 (12 de junho de 2022): 806. http://dx.doi.org/10.3390/jmse10060806.
Texto completo da fonteLiu, Qian Kun, e Ye Gao. "Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies". Applied Mechanics and Materials 226-228 (novembro de 2012): 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.
Texto completo da fonteLee, Insu, Sunho Park, Woochan Seok e Shin Hyung Rhee. "A Study on the Cavitation Model for the Cavitating Flow Analysis around the Marine Propeller". Mathematical Problems in Engineering 2021 (17 de junho de 2021): 1–8. http://dx.doi.org/10.1155/2021/2423784.
Texto completo da fonteXu, Gaowei, Huimin Fang, Yumin Song e Wensheng Du. "Optimal Design and Analysis of Cavitating Law for Well-Cellar Cavitating Mechanism Based on MBD-DEM Bidirectional Coupling Model". Agriculture 13, n.º 1 (5 de janeiro de 2023): 142. http://dx.doi.org/10.3390/agriculture13010142.
Texto completo da fonteCui, Baoling, e Jie Chen. "Visual experiment and numerical simulation of cavitation instability in a high-speed inducer". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, n.º 4 (6 de agosto de 2019): 470–80. http://dx.doi.org/10.1177/0957650919867173.
Texto completo da fonteZHANG, YAO, XIANWU LUO, SHUHONG LIU e HONGYUAN XU. "A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES". Modern Physics Letters B 24, n.º 13 (30 de maio de 2010): 1467–70. http://dx.doi.org/10.1142/s0217984910023888.
Texto completo da fonteTeses / dissertações sobre o assunto "Cavitation"
Momma, Takahiro. "Cavitation loading and erosion produced by a cavitating jet". Thesis, University of Nottingham, 1991. http://eprints.nottingham.ac.uk/14102/.
Texto completo da fontePeterson, Ashley Thomas. "Cavitation prediction". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612813.
Texto completo da fonteJohansen, Kristoffer. "Stable-inertial cavitation". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30796/.
Texto completo da fonteOdeyemi, Babatunde O. "Hydrodynamic cavitation : effects of cavitation on inactivation of Escherichia coli (E.coli)". Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/11009.
Texto completo da fonteKrahl, Dominik, Jürgen Weber e Maik Fuchs. "Visualization of cavitation and investigation of cavitation erosion in a valve". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199616.
Texto completo da fonteJin, Yong-Hua. "Optical investigations of cavitation". Thesis, Loughborough University, 1995. https://dspace.lboro.ac.uk/2134/27390.
Texto completo da fonteWatson, Peter. "Cavitation in human joints". Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304536.
Texto completo da fonteHou, Hang-sheng. "Cavitation instability in solids". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13697.
Texto completo da fonteGerold, Bjoern. "Cavitation in focused ultrasound". Thesis, University of Dundee, 2013. https://discovery.dundee.ac.uk/en/studentTheses/f41bf6b9-ae59-4a41-ba29-d5873821418b.
Texto completo da fonteWilms, Jeffrey. "Flow visualization of cavitation". Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/32158.
Texto completo da fonteDepartment of Mechanical and Nuclear Engineering
Mohammad Hosni
A typical refrigeration loop is composed of an evaporator, compressor, condenser, and an expansion valve. There are many possible refrigerants that can be used, but the physical properties of water make it ineffective in the traditional refrigeration loop. But if water could be used it would have many advantages as it is abundant, cheap, and is safe for the environment. This research focuses on a different kind of refrigeration loop using water. This new refrigeration loop utilizes water flowing through a nozzle, initiating cavitation. Cavitation is generally defined as creating vapor from liquid, not through adding heat, but by decreasing the pressure. In a converging/ diverging nozzle, as the cross sectional area is constricted, the velocity of the flow will increase, decreasing the pressure. Therefore, by flowing water through the nozzle it will cavitate. Transforming liquid into gas requires a certain amount of energy, defined as the latent heat. When a liquid is turned to vapor by an increase in the temperature, the latent heat is provided by the heat transfer to the system. As no energy is being added to the nozzle to cause the cavitation, the energy transfer to create the vapor comes from the remaining liquid, effectively causing a temperature drop. This research focused on the flow visualization of water cavitating as it travelled through a converging/ diverging nozzle. Under different flow conditions and different nozzle geometries, the cavitation manifested itself in different formations. When gasses were entrained in the water they formed bubbles, which acted as nucleation sites as they moved through the nozzle. This was called travelling bubble cavitation. In venturi nozzles the cavitation nucleated off of the wall, forming attached wall cavitation. When water flowed out of an orifice, a turbulent mixture of liquid and vapor, orifice jet, was formed which caused vapor to form around it. This was known as shear cavitation. When the water was rotated prior to the throat of an orifice, the orifice jet expanded radially and formed swirl cavitation. In addition to studying how the cavitation was formed, the void fraction and velocity were measured for attached wall cavitation.
Livros sobre o assunto "Cavitation"
Lecoffre, Yves, M. M. Oberai e V. H. Arakeri. Cavitation. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916.
Texto completo da fonted’Agostino, Luca, e Maria Vittoria Salvetti, eds. Fluid Dynamics of Cavitation and Cavitating Turbopumps. Vienna: Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9.
Texto completo da fonteLuca, D'Agostino, e Guillén Salvetti María, eds. Fluid dynamics of cavitation and cavitating turbopumps. Wien: Springer, 2007.
Encontre o texto completo da fonteWan, Mingxi, Yi Feng e Gail ter Haar, eds. Cavitation in Biomedicine. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7255-6.
Texto completo da fonteShah, Y. T., A. B. Pandit e V. S. Moholkar. Cavitation Reaction Engineering. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4787-7.
Texto completo da fonteMargulis, M. A. Sonochemistry and cavitation. Australia: Gordon and Breach Publishers, 1995.
Encontre o texto completo da fonteLecoffre, Yves. Cavitation: Bubble trackers. Rotterdam, Netherlands: Balkema, 1999.
Encontre o texto completo da fonteShah, Yatish T. Cavitation reaction engineering. New York: Kluwer Academic/Plenum Publishers, 1999.
Encontre o texto completo da fonteCabrera, E., V. Espert e F. Martínez, eds. Hydraulic Machinery and Cavitation. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9.
Texto completo da fonteC, Li S., ed. Cavitation of hydraulic machinery. London: Imperial College Press, 2000.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cavitation"
Lecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Phenomenon of Cavitation". In Cavitation, 1–11. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-1.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Thermodynamic Attenuation of Cavitation". In Cavitation, 211–43. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-10.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Single Bubble Life". In Cavitation, 44–64. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-4.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Cavitation Erosion". In Cavitation, 244–90. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-11.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Instrumentation". In Cavitation, 335–62. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-14.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Parameter σ of Cavitation". In Cavitation, 12–32. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-2.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Applications of Cavitation". In Cavitation, 363–70. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-15.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Fixed or Attached Cavitation". In Cavitation, 115–39. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-7.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Other Types of Cavitation". In Cavitation, 140–76. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-8.
Texto completo da fonteLecoffre, Yves, M. M. Oberai e V. H. Arakeri. "Types of Cavitation". In Cavitation, 33–43. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cavitation"
Kim, Dong-Hyun, Cong-Tu Ha, Warn-Gyu Park e Chul-Min Jung. "Numerical Analysis of Ventilated Cavitation Using Non-Condensable Gas Injection on Underwater Vehicle". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-04031.
Texto completo da fontePark, Sunho, e Shin Hyung Rhee. "Numerical Analysis of Super-Cavitating Flow Around a Two-Dimensional Cavitator Geometry". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33010.
Texto completo da fonteKim, K. H., e P. N. Nguyen. "Propeller Cavitation and Cavitation-Induced Pressure Fluctuation: Correlation Between Theory and Experiments". In SNAME Propellers '88 Symposium. SNAME, 1988. http://dx.doi.org/10.5957/pss-1988-10.
Texto completo da fontePeng, Guoyi, Hideto Ito e Seiji Shimizu. "Numerical Simulation of High-Speed Cavitating Water-Jet Issuing From a Submerged Nozzle". In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72438.
Texto completo da fonteDular, Matevzˇ, e Olivier Coutier-Delgosha. "Numerical Modelling of Cavitation Erosion". In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55034.
Texto completo da fonteSoyama, Hitoshi. "Luminescent Spots Induced by a Cavitating Jet". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33018.
Texto completo da fonteIga, Yuka, e Yoshiki Yoshida. "A Study of Propagating Speed of Rotating Cavitation Based on Numerical Analysis". In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78411.
Texto completo da fontePeng, Guoyi, Hideto Ito, Seiji Shimizu e Shigeo Fujikawa. "Numerical Investigation on the Structure of High-Speed Cavitating Water Jet Issuing From an Orifice Nozzle". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33023.
Texto completo da fonteDe Giorgi, Maria Grazia, Fabio Chiara e Antonio Ficarella. "Experimental Study of Thermal Cavitation in an Orifice". In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95406.
Texto completo da fonteKarimi Noughabi, Amir, Morteza Bayati e Mehran Tadjfar. "Investigation of Cavitation Phenomena on Noise of Underwater Propeller". In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69536.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cavitation"
Aguiar, Brandon, Paul Bianco e Arvind Agarwal. Using High-Speed Imaging and Machine Learning to Capture Ultrasonic Treatment Cavitation Area at Different Amplitudes. Florida International University, outubro de 2021. http://dx.doi.org/10.25148/mmeurs.009773.
Texto completo da fonteWest, C. D. "Cavitation in a Mercury Target". Office of Scientific and Technical Information (OSTI), setembro de 2000. http://dx.doi.org/10.2172/885870.
Texto completo da fonteTullis, J. P. Cavitation guide for control valves. Office of Scientific and Technical Information (OSTI), abril de 1993. http://dx.doi.org/10.2172/10155405.
Texto completo da fonteButtler, William Tillman. FICH: Feature instability cavitation history. Office of Scientific and Technical Information (OSTI), março de 2020. http://dx.doi.org/10.2172/1603958.
Texto completo da fonteWest, C. D. Cavitation in a Mercury Target. Office of Scientific and Technical Information (OSTI), setembro de 2000. http://dx.doi.org/10.2172/763224.
Texto completo da fonteSokolow, Adam, e Chad Hovey. A Phenomenological Model for Cavitation. Office of Scientific and Technical Information (OSTI), dezembro de 2020. http://dx.doi.org/10.2172/1810237.
Texto completo da fontePease, Leonard F. Drag Reducing and Cavitation Resistant Coatings. Office of Scientific and Technical Information (OSTI), dezembro de 2016. http://dx.doi.org/10.2172/1419158.
Texto completo da fonteCeccio, Steven L. Dynamics of Cavitation on Rotating Propulsors. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2003. http://dx.doi.org/10.21236/ada416939.
Texto completo da fonteWest, C. D. Cavitation Bubble Nucleation by Energetic Particles. Office of Scientific and Technical Information (OSTI), dezembro de 1998. http://dx.doi.org/10.2172/2687.
Texto completo da fonteSollars, Ryan, e Alfred D. Beitelman. Cavitation-Resistant Coatings for Hydropower Turbines. Fort Belvoir, VA: Defense Technical Information Center, junho de 2011. http://dx.doi.org/10.21236/ada545717.
Texto completo da fonte