Artigos de revistas sobre o tema "CaVβ1"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CaVβ1".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cohen, Risa M., Jason D. Foell, Ravi C. Balijepalli, Vaibhavi Shah, Johannes W. Hell e Timothy J. Kamp. "Unique modulation of L-type Ca2+ channels by short auxiliary β1d subunit present in cardiac muscle". American Journal of Physiology-Heart and Circulatory Physiology 288, n.º 5 (maio de 2005): H2363—H2374. http://dx.doi.org/10.1152/ajpheart.00348.2004.
Texto completo da fonteFoell, Jason D., Ravi C. Balijepalli, Brian P. Delisle, Anne Marie R. Yunker, Seth L. Robia, Jeffrey W. Walker, Maureen W. McEnery, Craig T. January e Timothy J. Kamp. "Molecular heterogeneity of calcium channel β-subunits in canine and human heart: evidence for differential subcellular localization". Physiological Genomics 17, n.º 2 (13 de abril de 2004): 183–200. http://dx.doi.org/10.1152/physiolgenomics.00207.2003.
Texto completo da fonteDespang, Patrick, Sarah Salamon, Alexandra Breitenkamp, Elza Kuzmenkina e Jan Matthes. "Inhibitory effects on L- and N-type calcium channels by a novel CaVβ1 variant identified in a patient with autism spectrum disorder". Naunyn-Schmiedeberg's Archives of Pharmacology 395, n.º 4 (5 de fevereiro de 2022): 459–70. http://dx.doi.org/10.1007/s00210-022-02213-7.
Texto completo da fonteTraoré, Massiré, Christel Gentil, Chiara Benedetto, Jean-Yves Hogrel, Pierre De la Grange, Bruno Cadot, Sofia Benkhelifa-Ziyyat et al. "An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse". Science Translational Medicine 11, n.º 517 (6 de novembro de 2019): eaaw1131. http://dx.doi.org/10.1126/scitranslmed.aaw1131.
Texto completo da fonteBelkacemi, Anouar, Andreas Beck, Barbara Wardas, Petra Weissgerber e Veit Flockerzi. "IP3-dependent Ca2+ signals are tightly controlled by Cavβ3, but not by Cavβ1, 2 and 4". Cell Calcium 104 (junho de 2022): 102573. http://dx.doi.org/10.1016/j.ceca.2022.102573.
Texto completo da fonteHeneghan, John F., Tora Mitra-Ganguli, Lee F. Stanish, Liwang Liu, Rubing Zhao e Ann R. Rittenhouse. "The Ca2+ channel β subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current". Journal of General Physiology 134, n.º 5 (26 de outubro de 2009): 369–84. http://dx.doi.org/10.1085/jgp.200910203.
Texto completo da fonteBrown, Betty, M. Steven Oberste, Kaija Maher e Mark A. Pallansch. "Complete Genomic Sequencing Shows that Polioviruses and Members of Human Enterovirus Species C Are Closely Related in the Noncapsid Coding Region". Journal of Virology 77, n.º 16 (15 de agosto de 2003): 8973–84. http://dx.doi.org/10.1128/jvi.77.16.8973-8984.2003.
Texto completo da fonteTaylor, Jackson, Tan Zhang, Laura Messi, Jiang Qian, Cristina Furdui, Claudia Hereñú e Osvaldo Delbono. "The Cavβ1 Subunit Regulates Gene Expression in Muscle Progenitor Cells". Biophysical Journal 102, n.º 3 (janeiro de 2012): 365a. http://dx.doi.org/10.1016/j.bpj.2011.11.1993.
Texto completo da fonteTraore, M., C. Gentil, C. Benedetto, J. Hogrel, P. De la Grange, S. Benkhelifa-Ziyyat, L. Julien, M. Lemaitre, A. Ferry e S. Falcone. "P.133A novel CaVβ1 isoform connecting voltage sensing with muscle mass homeostasis". Neuromuscular Disorders 29 (outubro de 2019): S87. http://dx.doi.org/10.1016/j.nmd.2019.06.189.
Texto completo da fonteBuraei, Zafir, e Jian Yang. "The β Subunit of Voltage-Gated Ca2+ Channels". Physiological Reviews 90, n.º 4 (outubro de 2010): 1461–506. http://dx.doi.org/10.1152/physrev.00057.2009.
Texto completo da fontePark, Won Sun, Soon Chul Heo, Eun Su Jeon, Da Hye Hong, Youn Kyoung Son, Jae-Hong Ko, Hyoung Kyu Kim, Sun Young Lee, Jae Ho Kim e Jin Han. "Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells". American Journal of Physiology-Cell Physiology 305, n.º 4 (15 de agosto de 2013): C377—C391. http://dx.doi.org/10.1152/ajpcell.00404.2012.
Texto completo da fonteXie, Mian, Xiang Li, Jing Han, Daniel L. Vogt, Silke Wittemann, Melanie D. Mark e Stefan Herlitze. "Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavβ4 versus Cavβ2 subunits to synaptic terminals". Journal of Cell Biology 178, n.º 3 (30 de julho de 2007): 489–502. http://dx.doi.org/10.1083/jcb.200702072.
Texto completo da fonteBéguin, Pascal, Kazuaki Nagashima, Ramasubbu N. Mahalakshmi, Réjan Vigot, Atsuko Matsunaga, Takafumi Miki, Mei Yong Ng et al. "BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis". Journal of Cell Biology 205, n.º 2 (21 de abril de 2014): 233–49. http://dx.doi.org/10.1083/jcb.201304101.
Texto completo da fonteFindeisen, Felix, e Daniel L. Minor. "Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation". Journal of General Physiology 133, n.º 3 (23 de fevereiro de 2009): 327–43. http://dx.doi.org/10.1085/jgp.200810143.
Texto completo da fonteGonzalez-Gutierrez, Giovanni, Erick Miranda-Laferte, David Naranjo, Patricia Hidalgo e Alan Neely. "Mutations of Nonconserved Residues within the Calcium Channel α1-interaction Domain Inhibit β-Subunit Potentiation". Journal of General Physiology 132, n.º 3 (25 de agosto de 2008): 383–95. http://dx.doi.org/10.1085/jgp.200709901.
Texto completo da fonteRomano, Antonella, Antonia Feola, Antonio Porcellini, Vincenzo Gigantino, Maurizio Di Bonito, Annabella Di Mauro, Rocco Caggiano, Raffaella Faraonio e Candida Zuchegna. "Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms". International Journal of Molecular Sciences 21, n.º 17 (20 de agosto de 2020): 5989. http://dx.doi.org/10.3390/ijms21175989.
Texto completo da fonteJha, Mithilesh, Archana Jha, Ashish Singh, Petra Weissgerber, Marc Freichel, Veit Flockerzi e Richard Flavell. "Essential role of Cavβ2 in T Cell development and homeostasis. (LYM7P.715)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 193.3. http://dx.doi.org/10.4049/jimmunol.192.supp.193.3.
Texto completo da fonteTaylor, Jackson, Andrea Pereyra, Tan Zhang, Maria Laura Messi, Zhong-Min Wang, Claudia Hereñú, Pei-Fen Kuan e Osvaldo Delbono. "The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells". Journal of Cell Biology 205, n.º 6 (16 de junho de 2014): 829–46. http://dx.doi.org/10.1083/jcb.201403021.
Texto completo da fonteAn, Mingwei, Xueling Chen, Zhuhong Yang, Jianyu Zhou, Shan Ye e Zhong Ding. "Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor". International Journal of Molecular Sciences 23, n.º 2 (11 de janeiro de 2022): 784. http://dx.doi.org/10.3390/ijms23020784.
Texto completo da fonteCatalucci, Daniele, Deng-Hong Zhang, Jaime DeSantiago, Franck Aimond, Guillaume Barbara, Jean Chemin, Désiré Bonci et al. "Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability". Journal of Cell Biology 184, n.º 6 (23 de março de 2009): 923–33. http://dx.doi.org/10.1083/jcb.200805063.
Texto completo da fontePuckerin, Akil A., Donald D. Chang, Zunaira Shuja, Papiya Choudhury, Joachim Scholz e Henry M. Colecraft. "Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels". Proceedings of the National Academy of Sciences 115, n.º 47 (5 de novembro de 2018): 12051–56. http://dx.doi.org/10.1073/pnas.1811024115.
Texto completo da fonteMitra-Ganguli, Tora, Iuliia Vitko, Edward Perez-Reyes e Ann R. Rittenhouse. "Orientation of palmitoylated CaVβ2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation". Journal of General Physiology 134, n.º 5 (26 de outubro de 2009): 385–96. http://dx.doi.org/10.1085/jgp.200910204.
Texto completo da fonteMeissner, Marcel, Petra Weissgerber, Juan E. Camacho Londoño, Jean Prenen, Sabine Link, Sandra Ruppenthal, Jeffery D. Molkentin et al. "Moderate Calcium Channel Dysfunction in Adult Mice with Inducible Cardiomyocyte-specific Excision of the cacnb2 Gene". Journal of Biological Chemistry 286, n.º 18 (28 de fevereiro de 2011): 15875–82. http://dx.doi.org/10.1074/jbc.m111.227819.
Texto completo da fonteChen, Xingjuan, Degang Liu, Donghui Zhou, Yubing Si, David Xu, Christopher W. Stamatkin, Mona K. Ghozayel et al. "Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking". Proceedings of the National Academy of Sciences 115, n.º 45 (24 de outubro de 2018): E10566—E10575. http://dx.doi.org/10.1073/pnas.1813157115.
Texto completo da fonteAl Katat, Aya, Juan Zhao, Angelino Calderone e Lucie Parent. "Sympathetic Stimulation Upregulates the Ca2+ Channel Subunit, CaVα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes". Cells 11, n.º 2 (6 de janeiro de 2022): 188. http://dx.doi.org/10.3390/cells11020188.
Texto completo da fonteJangsangthong, Wanchana, Elza Kuzmenkina, Ann Kristin Böhnke e Stefan Herzig. "Single-Channel Monitoring of Reversible L-Type Ca2+ Channel CaVα1-CaVβ Subunit Interaction". Biophysical Journal 101, n.º 11 (dezembro de 2011): 2661–70. http://dx.doi.org/10.1016/j.bpj.2011.09.063.
Texto completo da fonteJha, Archana, Ashish K. Singh, Petra Weissgerber, Marc Freichel, Veit Flockerzi, Richard A. Flavell e Mithilesh K. Jha. "Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis". Science Signaling 8, n.º 399 (20 de outubro de 2015): ra103. http://dx.doi.org/10.1126/scisignal.aac7538.
Texto completo da fonteRoberts-Crowley, Mandy L., e Ann R. Rittenhouse. "Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVβ subunits". Journal of General Physiology 133, n.º 4 (30 de março de 2009): 387–403. http://dx.doi.org/10.1085/jgp.200810047.
Texto completo da fonteBennett, Robert. "Reflecting on Editorial and Publishing Challenges: Government and Policy; The First 25 Years". Environment and Planning C: Government and Policy 26, n.º 1 (janeiro de 2008): 1–16. http://dx.doi.org/10.1068/cav1.
Texto completo da fontePark, Heonyong, Young-Mi Go, Ritesh Darji, Jong-Whan Choi, Michael P. Lisanti, Matthew C. Maland e Hanjoong Jo. "Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase". American Journal of Physiology-Heart and Circulatory Physiology 278, n.º 4 (1 de abril de 2000): H1285—H1293. http://dx.doi.org/10.1152/ajpheart.2000.278.4.h1285.
Texto completo da fonteVan Petegem, Filip, Karl E. Duderstadt, Kimberly A. Clark, Michelle Wang e Daniel L. Minor. "Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation". Structure 16, n.º 2 (fevereiro de 2008): 280–94. http://dx.doi.org/10.1016/j.str.2007.11.010.
Texto completo da fonteColvin, Robert B. "CADI, Canti, Cavi1". Transplantation 83, n.º 6 (março de 2007): 677–78. http://dx.doi.org/10.1097/01.tp.0000262011.05196.a1.
Texto completo da fonteCroager, Emma. "CAV1 connection". Nature Reviews Cancer 4, n.º 2 (fevereiro de 2004): 90–91. http://dx.doi.org/10.1038/nrc1283.
Texto completo da fonteBernardo, José F., Clara E. Magyar, W. Bruce Sneddon e Peter A. Friedman. "Impaired renal calcium absorption in mice lacking calcium channel β3 subunits". Canadian Journal of Physiology and Pharmacology 87, n.º 7 (julho de 2009): 522–30. http://dx.doi.org/10.1139/y09-035.
Texto completo da fonteCopeland, Courtney A., Bing Han, Ajit Tiwari, Eric D. Austin, James E. Loyd, James D. West e Anne K. Kenworthy. "A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal". Molecular Biology of the Cell 28, n.º 22 (novembro de 2017): 3095–111. http://dx.doi.org/10.1091/mbc.e17-06-0421.
Texto completo da fonteEl-Yazbi, Ahmed F., Woo Jung Cho, Richard Schulz e Edwin E. Daniel. "Caveolin-1 knockout alters β-adrenoceptors function in mouse small intestine". American Journal of Physiology-Gastrointestinal and Liver Physiology 291, n.º 6 (dezembro de 2006): G1020—G1030. http://dx.doi.org/10.1152/ajpgi.00159.2006.
Texto completo da fonteRathor, Navneeta, Ran Zhuang, Jian-Ying Wang, James M. Donahue, Douglas J. Turner e Jaladanki N. Rao. "Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca2+ influx after wounding". American Journal of Physiology-Gastrointestinal and Liver Physiology 306, n.º 8 (15 de abril de 2014): G650—G658. http://dx.doi.org/10.1152/ajpgi.00003.2014.
Texto completo da fonteGeletu, Mulu, Zaid Taha, Rozanne Arulanandam, Reva Mohan, Hikmat H. Assi, Maria G. Castro, Ivan Robert Nabi, Patrick T. Gunning e Leda Raptis. "Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells". Biochemistry and Cell Biology 97, n.º 5 (outubro de 2019): 638–46. http://dx.doi.org/10.1139/bcb-2018-0367.
Texto completo da fonteGodina, Christopher, Somayeh Khazaei, Mattias Belting, Johan Vallon-Christersson, Björn Nodin, Karin Jirström, Karolin Isaksson, Ana Bosch e Helena Jernström. "Abstract A006: Spatial localization of Caveolin-1 protein in triple negative breast cancer is related to different molecular features". Cancer Research 84, n.º 3_Supplement_1 (1 de fevereiro de 2024): A006. http://dx.doi.org/10.1158/1538-7445.advbc23-a006.
Texto completo da fonteJoshi, Bharat, Michele Bastiani, Scott S. Strugnell, Cecile Boscher, Robert G. Parton e Ivan R. Nabi. "Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation". Journal of Cell Biology 199, n.º 3 (22 de outubro de 2012): 425–35. http://dx.doi.org/10.1083/jcb.201207089.
Texto completo da fonteTang, Wenqing, Xuemei Feng, Si Zhang, Zhenggang Ren, Yinkun Liu, Biwei Yang, Bei lv, Yu Cai, Jinglin Xia e Ningling Ge. "Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway". Cellular Physiology and Biochemistry 36, n.º 3 (2015): 1223–36. http://dx.doi.org/10.1159/000430292.
Texto completo da fonteFeldman, Rebecca, Zoran Gatalica, Sandeep K. Reddy, Michael Castro e Jasgit C. Sachdev. "Caveolin-1: Oncogenic role in breast cancer? Clues from molecular profiling." Journal of Clinical Oncology 33, n.º 28_suppl (1 de outubro de 2015): 134. http://dx.doi.org/10.1200/jco.2015.33.28_suppl.134.
Texto completo da fonteCai, Ting, Haojie Wang, Yiliang Chen, Lijun Liu, William T. Gunning, Luis Eduardo M. Quintas e Zi-Jian Xie. "Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase". Journal of Cell Biology 182, n.º 6 (15 de setembro de 2008): 1153–69. http://dx.doi.org/10.1083/jcb.200712022.
Texto completo da fonteAvchalumov, Yosef, Alison D. Kreisler, Wulfran Trenet, Mahasweta Nayak, Brian P. Head, Juan C. Piña-Crespo e Chitra D. Mandyam. "Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior". International Journal of Molecular Sciences 22, n.º 15 (30 de julho de 2021): 8219. http://dx.doi.org/10.3390/ijms22158219.
Texto completo da fonteGodina, Christopher, Somayeh Khazaei, Mattias Belting, Johan Vallon-Christersson, Björn Nodin, Karin Jirström, Karolin Isaksson, Ana Bosch e Helena Jernström. "High Caveolin-1 mRNA expression in triple-negative breast cancer is associated with an aggressive tumor microenvironment, chemoresistance, and poor clinical outcome". PLOS ONE 19, n.º 7 (3 de julho de 2024): e0305222. http://dx.doi.org/10.1371/journal.pone.0305222.
Texto completo da fonteZimnicka, Adriana M., Yawer S. Husain, Ayesha N. Shajahan, Maria Sverdlov, Oleg Chaga, Zhenlong Chen, Peter T. Toth et al. "Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae". Molecular Biology of the Cell 27, n.º 13 (julho de 2016): 2090–106. http://dx.doi.org/10.1091/mbc.e15-11-0756.
Texto completo da fonteAl Madhoun, Ashraf, Shihab Kochumon, Dania Haddad, Reeby Thomas, Rasheeba Nizam, Lavina Miranda, Sardar Sindhu, Milad S. Bitar, Rasheed Ahmad e Fahd Al-Mulla. "Adipose Tissue Caveolin-1 Upregulation in Obesity Involves TNF-α/NF-κB Mediated Signaling". Cells 12, n.º 7 (27 de março de 2023): 1019. http://dx.doi.org/10.3390/cells12071019.
Texto completo da fonteLobos-González, Lorena, Lorena Oróstica, Natalia Díaz-Valdivia, Victoria Rojas-Celis, America Campos, Eduardo Duran-Jara, Nicole Farfán, Lisette Leyton e Andrew F. G. Quest. "Prostaglandin E2 Exposure Disrupts E-Cadherin/Caveolin-1-Mediated Tumor Suppression to Favor Caveolin-1-Enhanced Migration, Invasion, and Metastasis in Melanoma Models". International Journal of Molecular Sciences 24, n.º 23 (29 de novembro de 2023): 16947. http://dx.doi.org/10.3390/ijms242316947.
Texto completo da fonteGairhe, Salina, Keytam S. Awad, Edward J. Dougherty, Gabriela A. Ferreyra, Shuibang Wang, Zu-Xi Yu, Kazuyo Takeda et al. "Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension". Proceedings of the National Academy of Sciences 118, n.º 11 (8 de março de 2021): e2010206118. http://dx.doi.org/10.1073/pnas.2010206118.
Texto completo da fonteZhang, Chengbiao, Xiaotong Su, Lars Bellner e Dao-Hong Lin. "Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity". American Journal of Physiology-Cell Physiology 310, n.º 11 (1 de junho de 2016): C993—C1000. http://dx.doi.org/10.1152/ajpcell.00023.2016.
Texto completo da fonte