Artigos de revistas sobre o tema "Catalysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Catalysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhao, Xiaodan, e Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges". Synlett 32, n.º 13 (11 de maio de 2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Texto completo da fonteZhou, Wen-Jun, Da-Gang Yu, Yi-Han Zhang, Yong-Yuan Gui e Liang Sun. "Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization". Synthesis 50, n.º 17 (8 de agosto de 2018): 3359–78. http://dx.doi.org/10.1055/s-0037-1610222.
Texto completo da fonteDagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, n.º 18 (28 de junho de 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Texto completo da fonteFañanás-Mastral, Martín, Eva Rivera-Chao e Laura Fra. "Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons". Synthesis 50, n.º 19 (9 de julho de 2018): 3825–32. http://dx.doi.org/10.1055/s-0037-1610434.
Texto completo da fonteDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou e Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols". Synthesis 54, n.º 07 (2 de dezembro de 2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Texto completo da fonteKaplunenko, Volodymyr, e Mykola Kosinov. "Electric field - induced catalysis. Laws of field catalysis". InterConf, n.º 26(129) (18 de outubro de 2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.
Texto completo da fonteKhan, Mohammad Niyaz, e Ibrahim Isah Fagge. "Kinetics and Mechanism of Cationic Micelle/Flexible Nanoparticle Catalysis: A Review". Progress in Reaction Kinetics and Mechanism 43, n.º 1 (março de 2018): 1–20. http://dx.doi.org/10.3184/146867818x15066862094905.
Texto completo da fonteWilliams, Ian H. "Catalysis: transition-state molecular recognition?" Beilstein Journal of Organic Chemistry 6 (3 de novembro de 2010): 1026–34. http://dx.doi.org/10.3762/bjoc.6.117.
Texto completo da fonteShubina, Tatyana E., e Timothy Clark. "Catalysis of the Quadricyclane to Norbornadiene Rearrangement by SnCl2 and CuSO4". Zeitschrift für Naturforschung B 65, n.º 3 (1 de março de 2010): 347—r369. http://dx.doi.org/10.1515/znb-2010-0319.
Texto completo da fonteHidayati, Nur, Rahmah Puspita Sari e Herry Purnama. "Catalysis of glycerol acetylation on solid acid catalyst: a review". Jurnal Kimia Sains dan Aplikasi 23, n.º 12 (14 de janeiro de 2021): 414–23. http://dx.doi.org/10.14710/jksa.23.12.414-423.
Texto completo da fonteBaráth, Eszter. "Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts". Synthesis 52, n.º 04 (2 de janeiro de 2020): 504–20. http://dx.doi.org/10.1055/s-0039-1691542.
Texto completo da fonteLilley, David M. J. "RNA catalysis: More than a messenger". Biochemist 28, n.º 2 (1 de abril de 2006): 7–10. http://dx.doi.org/10.1042/bio02802007.
Texto completo da fonteTaqui Khan, M. M. "Carbonylation Reactions in Aqueous or Mixed Solvent Systems". Platinum Metals Review 35, n.º 2 (1 de abril de 1991): 70–82. http://dx.doi.org/10.1595/003214091x3527082.
Texto completo da fonteYe, Rong, Tyler J. Hurlburt, Kairat Sabyrov, Selim Alayoglu e Gabor A. Somorjai. "Molecular catalysis science: Perspective on unifying the fields of catalysis". Proceedings of the National Academy of Sciences 113, n.º 19 (25 de abril de 2016): 5159–66. http://dx.doi.org/10.1073/pnas.1601766113.
Texto completo da fonteHabib, Umair, Farooq Ahmad, Muhammad Awais, Namisa Naz, Maira Aslam, Malka Urooj, Anam Moqeem et al. "Sustainable Catalysis: Navigating Challenges and Embracing Opportunities for a Greener Future". Journal of Chemistry and Environment 2, n.º 2 (4 de outubro de 2023): 14–53. http://dx.doi.org/10.56946/jce.v2i2.205.
Texto completo da fonteKim, Byungjun, Yongjae Kim e Sarah Yunmi Lee. "Stereoselective Michael Additions of Arylacetic Acid Derivatives by Asymmetric Organocatalysis". Synlett 33, n.º 07 (5 de janeiro de 2022): 609–16. http://dx.doi.org/10.1055/s-0041-1737323.
Texto completo da fonteMotokura, Ken, e Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation". Synthesis 53, n.º 18 (9 de abril de 2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Texto completo da fonteIglesias, Daniel, e Michele Melchionna. "Enter the Tubes: Carbon Nanotube Endohedral Catalysis". Catalysts 9, n.º 2 (1 de fevereiro de 2019): 128. http://dx.doi.org/10.3390/catal9020128.
Texto completo da fonteWan, Qiang, Sen Lin e Hua Guo. "Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights". Molecules 27, n.º 12 (10 de junho de 2022): 3734. http://dx.doi.org/10.3390/molecules27123734.
Texto completo da fonteLomic, Gizela, Erne Kis, Goran Boskovic e Radmila Marinkovic-Neducin. "Application of scanning electron microscopy in catalysis". Acta Periodica Technologica, n.º 35 (2004): 67–77. http://dx.doi.org/10.2298/apt0435067l.
Texto completo da fonteCrawford, Jennifer, e Matthew Sigman. "Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?" Synthesis 51, n.º 05 (8 de janeiro de 2019): 1021–36. http://dx.doi.org/10.1055/s-0037-1611636.
Texto completo da fontePonce, Adrian. "Radionuclide-induced defect sites in iron-bearing minerals may have accelerated the emergence of life". Interface Focus 9, n.º 6 (18 de outubro de 2019): 20190085. http://dx.doi.org/10.1098/rsfs.2019.0085.
Texto completo da fonteLi, Shangkun, Rizwan Ahmed, Yanhui Yi e Annemie Bogaerts. "Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis". Catalysts 11, n.º 5 (1 de maio de 2021): 590. http://dx.doi.org/10.3390/catal11050590.
Texto completo da fonteYap, Daryl Q. J., Raju Cheerlavancha, Renecia Lowe, Siyao Wang e Luke Hunter. "Investigation of cis- and trans-4-Fluoroprolines as Enantioselective Catalysts in a Variety of Organic Transformations". Australian Journal of Chemistry 68, n.º 1 (2015): 44. http://dx.doi.org/10.1071/ch14129.
Texto completo da fonteAbu-Reziq, Raed, e Howard Alper. "Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis". Applied Sciences 2, n.º 2 (26 de março de 2012): 260–76. http://dx.doi.org/10.3390/app2020260.
Texto completo da fonteRoss, Julian. "API Abstracts - Catalysts and Catalysis". Applied Catalysis 30, n.º 1 (março de 1987): 192. http://dx.doi.org/10.1016/s0166-9834(00)81032-5.
Texto completo da fonteCatlow, Richard. "Modelling of catalysts and catalysis". Journal of Computer-Aided Materials Design 3, n.º 1-3 (agosto de 1996): 56–60. http://dx.doi.org/10.1007/bf01185636.
Texto completo da fonteDegnan, Tom. "Green catalysts and green catalysis". Focus on Catalysts 2024, n.º 9 (setembro de 2024): 1. http://dx.doi.org/10.1016/j.focat.2024.09.001.
Texto completo da fonteWu, Zhiyi, Jiahui Shen, Chaoran Li, Chengcheng Zhang, Chunpeng Wu, Zimu Li, Xingda An e Le He. "Niche Applications of MXene Materials in Photothermal Catalysis". Chemistry 5, n.º 1 (6 de março de 2023): 492–510. http://dx.doi.org/10.3390/chemistry5010036.
Texto completo da fonteSaha, Debasree, e Chhanda Mukhopadhyay. "Metal Nanoparticles: An Efficient Tool for Heterocycles Synthesis and Their Functionalization via C-H Activation". Current Organocatalysis 6, n.º 2 (24 de junho de 2019): 79–91. http://dx.doi.org/10.2174/2213337206666181226152743.
Texto completo da fonteKobayashi, Shū, e Kei Manabe. "Green Lewis acid catalysis in organic synthesis". Pure and Applied Chemistry 72, n.º 7 (1 de janeiro de 2000): 1373–80. http://dx.doi.org/10.1351/pac200072071373.
Texto completo da fonteNori, Valeria, Fabio Pesciaioli, Arianna Sinibaldi, Giuliana Giorgianni e Armando Carlone. "Boron-Based Lewis Acid Catalysis: Challenges and Perspectives". Catalysts 12, n.º 1 (22 de dezembro de 2021): 5. http://dx.doi.org/10.3390/catal12010005.
Texto completo da fonteTrunschke, Annette, Giulia Bellini, Maxime Boniface, Spencer J. Carey, Jinhu Dong, Ezgi Erdem, Lucas Foppa et al. "Towards Experimental Handbooks in Catalysis". Topics in Catalysis 63, n.º 19-20 (6 de outubro de 2020): 1683–99. http://dx.doi.org/10.1007/s11244-020-01380-2.
Texto completo da fonteLilley, David M. J. "Mechanisms of RNA catalysis". Philosophical Transactions of the Royal Society B: Biological Sciences 366, n.º 1580 (27 de outubro de 2011): 2910–17. http://dx.doi.org/10.1098/rstb.2011.0132.
Texto completo da fonteGarcía-Álvarez, Joaquín. "Special Issue: “Advances in Homogeneous Catalysis”". Molecules 25, n.º 7 (25 de março de 2020): 1493. http://dx.doi.org/10.3390/molecules25071493.
Texto completo da fonteLi, Feng, e Hao Li. "Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions". Innovation & Technology Advances 2, n.º 1 (12 de março de 2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Texto completo da fonteClerici, Mario G. "Zeolites for Fine Chemical Production State of Art and Perspectives". Eurasian Chemico-Technological Journal 3, n.º 4 (10 de julho de 2017): 231. http://dx.doi.org/10.18321/ectj573.
Texto completo da fonteSingh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts". Catalysts 9, n.º 2 (12 de fevereiro de 2019): 173. http://dx.doi.org/10.3390/catal9020173.
Texto completo da fonteGai, P. L., K. Kourtakis, H. Dindi e S. Ziemecki. "Novel Xerogel Catalyst Materials for Hydrogenation Reactions and the Role of Atomic Scale Interfaces". Microscopy and Microanalysis 5, S2 (agosto de 1999): 704–5. http://dx.doi.org/10.1017/s1431927600016846.
Texto completo da fonteJianchen, Wang, Kang Yong e Fangkuan Sun. "Mass production of thermally stable Pt single-atom catalysts for the catalytic oxidation of sulfur dioxide". Catalysis Science & Technology 12, n.º 1 (2022): 124–34. http://dx.doi.org/10.1039/d1cy01578h.
Texto completo da fonteShetty, Apoorva, Vandana Molahalli, Aman Sharma e Gurumurthy Hegde. "Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future". Catalysts 13, n.º 1 (23 de dezembro de 2022): 20. http://dx.doi.org/10.3390/catal13010020.
Texto completo da fonteChang Chien, Tzu-Chin, e Murielle F. Delley. "Interfacial Chemistry and Catalysis of Inorganic Materials". CHIMIA 78, n.º 1/2 (28 de fevereiro de 2024): 7–12. http://dx.doi.org/10.2533/chimia.2024.7.
Texto completo da fonteMaksimchuk, Nataliya V., Olga V. Zalomaeva, Igor Y. Skobelev, Konstantin A. Kovalenko, Vladimir P. Fedin e Oxana A. Kholdeeva. "Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, n.º 2143 (14 de março de 2012): 2017–34. http://dx.doi.org/10.1098/rspa.2012.0072.
Texto completo da fonteLeenders, Stefan H. A. M., Rafael Gramage-Doria, Bas de Bruin e Joost N. H. Reek. "Transition metal catalysis in confined spaces". Chemical Society Reviews 44, n.º 2 (2015): 433–48. http://dx.doi.org/10.1039/c4cs00192c.
Texto completo da fontePanchishnyi, V. I., e I. Yu Vorobiev. "Role of oxidation catalysis in after-treatment of exhaust gases of diesel engines". Trudy NAMI, n.º 2 (12 de julho de 2023): 18–30. http://dx.doi.org/10.51187/0135-3152-2023-2-18-30.
Texto completo da fonteShen, Siqi, Yuanyuan Sun, Hao Sun, Yuepeng Pang, Shuixin Xia, Taiqiang Chen, Shiyou Zheng e Tao Yuan. "Research Progress in ZIF-8 Derived Single Atomic Catalysts for Oxygen Reduction Reaction". Catalysts 12, n.º 5 (7 de maio de 2022): 525. http://dx.doi.org/10.3390/catal12050525.
Texto completo da fonteBOUSBA, DALILA, CHAFIA SOBHI, AMNA ZOUAOUI e SOUAD BOUASLA. "Synthesis of activated carbon sand their application in the synthesis of monometallic and bimetallic supported catalysts". Algerian Journal of Signals and Systems 5, n.º 4 (15 de dezembro de 2020): 190–96. http://dx.doi.org/10.51485/ajss.v5i4.116.
Texto completo da fonteSieber, Joshua D., e Toolika Agrawal. "Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies". Synthesis 52, n.º 18 (25 de maio de 2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.
Texto completo da fonteOllevier, Thierry. "Iron bis(oxazoline) complexes in asymmetric catalysis". Catalysis Science & Technology 6, n.º 1 (2016): 41–48. http://dx.doi.org/10.1039/c5cy01357g.
Texto completo da fonteHenderson, Alexander S., John F. Bower e M. Carmen Galan. "Carbohydrates as enantioinduction components in stereoselective catalysis". Organic & Biomolecular Chemistry 14, n.º 17 (2016): 4008–17. http://dx.doi.org/10.1039/c6ob00368k.
Texto completo da fonte