Artigos de revistas sobre o tema "Catalysie"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Catalysie".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhao, Xiaodan, e Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges". Synlett 32, n.º 13 (11 de maio de 2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Texto completo da fonteDagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, n.º 18 (28 de junho de 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Texto completo da fonteDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou e Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols". Synthesis 54, n.º 07 (2 de dezembro de 2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Texto completo da fonteLi, Feng, e Hao Li. "Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions". Innovation & Technology Advances 2, n.º 1 (12 de março de 2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Texto completo da fonteShi, Chunjie, Xiaofeng Yu, Wei Wang, Haibing Wu, Ai Zhang e Shengjin Liu. "The Activity and Cyclic Catalysis of Synthesized Iron-Supported Zr/Ti Solid Acid Catalysts in Methyl Benzoate Compounds". Catalysts 13, n.º 6 (2 de junho de 2023): 971. http://dx.doi.org/10.3390/catal13060971.
Texto completo da fonteClerici, Mario G. "Zeolites for Fine Chemical Production State of Art and Perspectives". Eurasian Chemico-Technological Journal 3, n.º 4 (10 de julho de 2017): 231. http://dx.doi.org/10.18321/ectj573.
Texto completo da fonteZhang, Meng. "A Novel Energy Band Match Method and a Highly Efficient CuO–Co3O4@SiO2 Catalyst for Dimethyl Carbonate Synthesis from CO2". Science of Advanced Materials 13, n.º 1 (1 de janeiro de 2021): 115–22. http://dx.doi.org/10.1166/sam.2021.3848.
Texto completo da fonteJankovič, Ľuboš, e Peter Komadel. "Catalytic Properties of a Heated Ammonium-Saturated Dioctahedral Smectite". Collection of Czechoslovak Chemical Communications 65, n.º 9 (2000): 1527–36. http://dx.doi.org/10.1135/cccc20001527.
Texto completo da fonteZhuang, Huimin, Bili Chen, Wenjin Cai, Yanyan Xi, Tianxu Ye, Chuangye Wang e Xufeng Lin. "UiO-66-supported Fe catalyst: a vapour deposition preparation method and its superior catalytic performance for removal of organic pollutants in water". Royal Society Open Science 6, n.º 4 (abril de 2019): 182047. http://dx.doi.org/10.1098/rsos.182047.
Texto completo da fonteMotokura, Ken, e Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation". Synthesis 53, n.º 18 (9 de abril de 2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Texto completo da fonteLukey, CA, MA Long e JL Garnett. "Aromatic Hydrogen Isotope Exchange Reactions Catalyzed by Iridium Complexes in Aqueous Solution". Australian Journal of Chemistry 48, n.º 1 (1995): 79. http://dx.doi.org/10.1071/ch9950079.
Texto completo da fonteHolzwarth, Arnold, e Wilhelm F. Maier. "Catalytic Phenomena in Combinatorial Libraries of Heterogeneous Catalysts". Platinum Metals Review 44, n.º 1 (1 de janeiro de 2000): 16–21. http://dx.doi.org/10.1595/003214000x4411621.
Texto completo da fonteZhou, Wen-Jun, Da-Gang Yu, Yi-Han Zhang, Yong-Yuan Gui e Liang Sun. "Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization". Synthesis 50, n.º 17 (8 de agosto de 2018): 3359–78. http://dx.doi.org/10.1055/s-0037-1610222.
Texto completo da fonteMiceli, Mariachiara, Patrizia Frontera, Anastasia Macario e Angela Malara. "Recovery/Reuse of Heterogeneous Supported Spent Catalysts". Catalysts 11, n.º 5 (1 de maio de 2021): 591. http://dx.doi.org/10.3390/catal11050591.
Texto completo da fonteZhai, Peng, Geng Sun, Qingjun Zhu e Ding Ma. "Fischer-Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction". Nanotechnology Reviews 2, n.º 5 (1 de outubro de 2013): 547–76. http://dx.doi.org/10.1515/ntrev-2013-0025.
Texto completo da fonteCottone, Grazia, Sergio Giuffrida, Stefano Bettati, Stefano Bruno, Barbara Campanini, Marialaura Marchetti, Stefania Abbruzzetti et al. "More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function". Catalysts 9, n.º 12 (4 de dezembro de 2019): 1024. http://dx.doi.org/10.3390/catal9121024.
Texto completo da fontePatil, Siddappa A., Shivaputra A. Patil e Renukadevi Patil. "Magnetic Nanoparticles Supported Carbene and Amine Based Metal Complexes in Catalysis". Journal of Nano Research 42 (julho de 2016): 112–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.42.112.
Texto completo da fonteTang, Xiaolong, Xianmang Xu, Honghong Yi, Chen Chen e Chuan Wang. "Recent Developments of Electrochemical Promotion of Catalysis in the Techniques of DeNOx". Scientific World Journal 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/463160.
Texto completo da fonteGao, Yan, Wenchao Jiang, Tao Luan, Hui Li, Wenke Zhang, Wenchen Feng e Haolin Jiang. "High-Efficiency Catalytic Conversion of NOx by the Synergy of Nanocatalyst and Plasma: Effect of Mn-Based Bimetallic Active Species". Catalysts 9, n.º 1 (18 de janeiro de 2019): 103. http://dx.doi.org/10.3390/catal9010103.
Texto completo da fonteLiu, Jingyue. "Advanced Electron Microscopy Characterization of Nanostructured Heterogeneous Catalysts". Microscopy and Microanalysis 10, n.º 1 (22 de janeiro de 2004): 55–76. http://dx.doi.org/10.1017/s1431927604040310.
Texto completo da fonteZhang, Xiaolong, Shilei Jin, Yuhan Zhang, Liyuan Wang, Yang Liu e Qian Duan. "One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction". Molecules 26, n.º 23 (30 de novembro de 2021): 7261. http://dx.doi.org/10.3390/molecules26237261.
Texto completo da fonteBOUSBA, DALILA, CHAFIA SOBHI, AMNA ZOUAOUI e SOUAD BOUASLA. "Synthesis of activated carbon sand their application in the synthesis of monometallic and bimetallic supported catalysts". Algerian Journal of Signals and Systems 5, n.º 4 (15 de dezembro de 2020): 190–96. http://dx.doi.org/10.51485/ajss.v5i4.116.
Texto completo da fonteXu, Jun Qiang, Fang Guo, Shu Shu Zou e Xue Jun Quan. "Optimization of the Catalytic Wet Peroxide Oxidation of Phenol over the Fe/NH4Y Catalyst". Materials Science Forum 694 (julho de 2011): 640–44. http://dx.doi.org/10.4028/www.scientific.net/msf.694.640.
Texto completo da fonteChen, Jianfeng, Xing Gong, Jianyu Li, Yingkun Li, Jiguo Ma, Chengkang Hou, Guoqing Zhao, Weicheng Yuan e Baoguo Zhao. "Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction". Science 360, n.º 6396 (28 de junho de 2018): 1438–42. http://dx.doi.org/10.1126/science.aat4210.
Texto completo da fonteGaliwango, Emmanuel, James Butler e Samira Lotfi. "A Review of Catalyst Integration in Hydrothermal Gasification". Fuels 5, n.º 3 (23 de agosto de 2024): 375–93. http://dx.doi.org/10.3390/fuels5030022.
Texto completo da fonteLi, Siyi, Shuo Cheng e Jeffrey S. Cross. "Homogeneous and Heterogeneous Catalysis Impact on Pyrolyzed Cellulose to Produce Bio-Oil". Catalysts 10, n.º 2 (3 de fevereiro de 2020): 178. http://dx.doi.org/10.3390/catal10020178.
Texto completo da fonteMd Ali, Siti Aminah, Ku Halim Ku Hamid e Kamariah Noor Ismail. "Effect of Ni/Co Ratio on Bimetallic Oxide Supported Silica Catalyst in CO2 Methanation". Applied Mechanics and Materials 802 (outubro de 2015): 431–36. http://dx.doi.org/10.4028/www.scientific.net/amm.802.431.
Texto completo da fonteChen, Huihui, Zhenhua Dong e Jun Yue. "Advances in Microfluidic Synthesis of Solid Catalysts". Powders 1, n.º 3 (4 de agosto de 2022): 155–83. http://dx.doi.org/10.3390/powders1030011.
Texto completo da fonteMa, Yubo, Zhixian Gao, Tao Yuan e Tianfu Wang. "Kinetics of Dicyclopentadiene Hydroformylation over Rh–SiO2 Catalysts". Progress in Reaction Kinetics and Mechanism 42, n.º 2 (maio de 2017): 191–99. http://dx.doi.org/10.3184/146867817x14821527549013.
Texto completo da fonteGamaliia, Vira, Artem Zabuga e Gennadii Zabuga. "On the History of Developing Catalysis in Ukraine (1850s–1980s)". Acta Baltica Historiae et Philosophiae Scientiarum 11, n.º 2 (15 de dezembro de 2023): 76–92. http://dx.doi.org/10.11590/abhps.2023.2.04.
Texto completo da fonteChen, Qi, Zhigang Qi, Zhaoxuan Wang, Ziqi Song e Weimin Wang. "Recent Advances in and Challenges with Fe-Based Metallic Glasses for Catalytic Efficiency: Environment and Energy Fields". Materials 17, n.º 12 (14 de junho de 2024): 2922. http://dx.doi.org/10.3390/ma17122922.
Texto completo da fonteLu, Dongsheng, Yufa Feng, Zitian Ding, Jinyun Liao, Xibin Zhang, Hui-Ru Liu e Hao Li. "MoO3-Doped MnCo2O4 Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation". Nanomaterials 9, n.º 1 (24 de dezembro de 2018): 21. http://dx.doi.org/10.3390/nano9010021.
Texto completo da fonteTrigoura, Leslie, Yalan Xing e Bhanu P. S. Chauhan. "Recyclable Catalysts for Alkyne Functionalization". Molecules 26, n.º 12 (9 de junho de 2021): 3525. http://dx.doi.org/10.3390/molecules26123525.
Texto completo da fonteVayenas, C. G., S. Bebelis, I. V. Yentekakis, P. Tsiakaras e H. Karasali. "Non-Faradaic Electrochemical Modification of Catalytic Activity". Platinum Metals Review 34, n.º 3 (1 de julho de 1990): 122–30. http://dx.doi.org/10.1595/003214090x343122130.
Texto completo da fonteDadashi-Silab, Sajjad, e Krzysztof Matyjaszewski. "Iron Catalysts in Atom Transfer Radical Polymerization". Molecules 25, n.º 7 (3 de abril de 2020): 1648. http://dx.doi.org/10.3390/molecules25071648.
Texto completo da fonteDu, Yuan-Peng, e Jeremy S. Luterbacher. "Designing Heterogeneous Catalysts for Renewable Catalysis Applications Using Metal Oxide Deposition". CHIMIA International Journal for Chemistry 73, n.º 9 (18 de setembro de 2019): 698–706. http://dx.doi.org/10.2533/chimia.2019.698.
Texto completo da fonteZhou, Hong-Jie, Chun-Lei Song, Li-Ping Si, Xu-Jia Hong e Yue-Peng Cai. "The Development of Catalyst Materials for the Advanced Lithium–Sulfur Battery". Catalysts 10, n.º 6 (17 de junho de 2020): 682. http://dx.doi.org/10.3390/catal10060682.
Texto completo da fonteLimlamthong, Mutjalin, Nithinart Chitpong e Bunjerd Jongsomjit. "Influence of Phosphoric Acid Modification on Catalytic Properties of γ-χ Al2O3 Catalysts for Dehydration of Ethanol to Diethyl Ether". Bulletin of Chemical Reaction Engineering & Catalysis 14, n.º 1 (15 de abril de 2019): 1. http://dx.doi.org/10.9767/bcrec.14.1.2436.1-8.
Texto completo da fonteLiang, Wenjun, Xiujuan Shi, Qinglei Li, Sida Ren e Guobin Yin. "Effect of Pd/Ce Loading and Catalyst Components on the Catalytic Abatement of Toluene". Catalysts 12, n.º 2 (16 de fevereiro de 2022): 225. http://dx.doi.org/10.3390/catal12020225.
Texto completo da fontePan, Dipika, e Jhuma Ganguly. "Assessment of Chitosan Based Catalyst and their Mode of Action". Current Organocatalysis 6, n.º 2 (24 de junho de 2019): 106–38. http://dx.doi.org/10.2174/2213337206666190327174103.
Texto completo da fonteFan, Guozhi, Min Wang, Zhenxiao Duan, Minghai Wan e Tao Fang. "Synthesis of Diphenyl Carbonate from Carbon Dioxide, Phenol, and Carbon Tetrachloride Catalysed by ZnCl2 Using Trifluoromethanesulfonic Acid as Functional Co-Catalyst". Australian Journal of Chemistry 65, n.º 12 (2012): 1667. http://dx.doi.org/10.1071/ch12115.
Texto completo da fonteChen, Haimei, Shaofei Wang, Lilan Huang, Leitao Zhang, Jin Han, Wanzheng Ren, Jian Pan e Jiao Li. "Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation". Catalysts 12, n.º 11 (4 de novembro de 2022): 1363. http://dx.doi.org/10.3390/catal12111363.
Texto completo da fonteGates, Bruce C. "Concluding remarks: progress toward the design of solid catalysts". Faraday Discussions 188 (2016): 591–602. http://dx.doi.org/10.1039/c6fd00134c.
Texto completo da fonteZhang, Yujun, Hui Teng, Junpeng Chen, Rui Xia, Yujun Zhou, Kunlin Xie e Zhiyong Chen. "Application of Palladium Single Atoms in C−C Coupling Reactions of Pharmaceutical Synthesis". Advances in Computer and Engineering Technology Research 1, n.º 1 (8 de dezembro de 2023): 192. http://dx.doi.org/10.61935/acetr.1.1.2023.p192.
Texto completo da fonteHou, Zhiquan, Mengwei Hua, Yuxi Liu, Jiguang Deng, Xin Zhou, Ying Feng, Yifan Li e Hongxing Dai. "Exploring Intermetallic Compounds: Properties and Applications in Catalysis". Catalysts 14, n.º 8 (18 de agosto de 2024): 538. http://dx.doi.org/10.3390/catal14080538.
Texto completo da fonteOrtega-Caballero, Fernando, e Mikael Bols. "Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases". Canadian Journal of Chemistry 84, n.º 4 (1 de abril de 2006): 650–58. http://dx.doi.org/10.1139/v06-039.
Texto completo da fonteXu, Jun Qiang, Fang Guo, Jun Li, Xiu Zhi Ran e Yan Tang. "Synthesis of the Cu/Flokite Catalysts and their Performances for Catalytic Wet Peroxide Oxidation of Phenol". Advanced Materials Research 560-561 (agosto de 2012): 869–72. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.869.
Texto completo da fonteCrozier, P. A. "In Situ Characterization of Dynamic Changes in the Microstructure and Chemistry of Catalysts". Microscopy and Microanalysis 7, S2 (agosto de 2001): 1058–59. http://dx.doi.org/10.1017/s1431927600031366.
Texto completo da fonteDabhane, Harshal, Suresh Ghotekar, Pawan Tambade, Shreyas Pansambal, Rajeshwari Oza e Vijay Medhane. "MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations". European Journal of Chemistry 12, n.º 1 (31 de março de 2021): 86–108. http://dx.doi.org/10.5155/eurjchem.12.1.86-108.2060.
Texto completo da fonteJia, Wenzhi, Xia Cai, Yong Zhang, Xiaohua Zuo, Juanjuan Yuan, Xinhua Liu, Zhirong Zhu e Xiangyi Deng. "Catalytic Dehydrofluorination of Hydrofluoroalkanes to Fluorinated Olifein Over Ni/AlF3 Catalysts". MATEC Web of Conferences 238 (2018): 03004. http://dx.doi.org/10.1051/matecconf/201823803004.
Texto completo da fonte