Literatura científica selecionada sobre o tema "Catalysie"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Catalysie".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Catalysie"
Zhao, Xiaodan, e Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges". Synlett 32, n.º 13 (11 de maio de 2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Texto completo da fonteDagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, n.º 18 (28 de junho de 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Texto completo da fonteDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou e Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols". Synthesis 54, n.º 07 (2 de dezembro de 2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Texto completo da fonteLi, Feng, e Hao Li. "Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions". Innovation & Technology Advances 2, n.º 1 (12 de março de 2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Texto completo da fonteShi, Chunjie, Xiaofeng Yu, Wei Wang, Haibing Wu, Ai Zhang e Shengjin Liu. "The Activity and Cyclic Catalysis of Synthesized Iron-Supported Zr/Ti Solid Acid Catalysts in Methyl Benzoate Compounds". Catalysts 13, n.º 6 (2 de junho de 2023): 971. http://dx.doi.org/10.3390/catal13060971.
Texto completo da fonteClerici, Mario G. "Zeolites for Fine Chemical Production State of Art and Perspectives". Eurasian Chemico-Technological Journal 3, n.º 4 (10 de julho de 2017): 231. http://dx.doi.org/10.18321/ectj573.
Texto completo da fonteZhang, Meng. "A Novel Energy Band Match Method and a Highly Efficient CuO–Co3O4@SiO2 Catalyst for Dimethyl Carbonate Synthesis from CO2". Science of Advanced Materials 13, n.º 1 (1 de janeiro de 2021): 115–22. http://dx.doi.org/10.1166/sam.2021.3848.
Texto completo da fonteJankovič, Ľuboš, e Peter Komadel. "Catalytic Properties of a Heated Ammonium-Saturated Dioctahedral Smectite". Collection of Czechoslovak Chemical Communications 65, n.º 9 (2000): 1527–36. http://dx.doi.org/10.1135/cccc20001527.
Texto completo da fonteZhuang, Huimin, Bili Chen, Wenjin Cai, Yanyan Xi, Tianxu Ye, Chuangye Wang e Xufeng Lin. "UiO-66-supported Fe catalyst: a vapour deposition preparation method and its superior catalytic performance for removal of organic pollutants in water". Royal Society Open Science 6, n.º 4 (abril de 2019): 182047. http://dx.doi.org/10.1098/rsos.182047.
Texto completo da fonteMotokura, Ken, e Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation". Synthesis 53, n.º 18 (9 de abril de 2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Texto completo da fonteTeses / dissertações sobre o assunto "Catalysie"
Grieco, Francesco. "Le rôle de la poussière carbonée dans le milieu interstellaire en tant que catalyseur pour la formation de molécules et la croissance des grains". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1306.
Texto completo da fonteThis Thesis presents a comprehensive study of the interaction between dust grains andvarious gas-phase species in the ISM. The main results involve the use of surfaces likeices and coronene, a surface that resembles polycyclic aromatic hydrocarbons (PAHs),with gas-phase H and O elements. We investigate how dust grains can catalyze the formation of new molecules through processes like adsorption, diffusion, surface reactions and desorption in typical ISM conditions.The Thesis includes three experimental Chapters (4, 5 and 6), performed at LERMACYUby using the FORMOLISM setup, that are complemented by two theoretical studies(Chapters 8 and 9), conducted with Cloudy and Nautilus codes at UGent. The experiments focus on the role that different dust grain surfaces and ice layers have onthe Binding Energies (BEs) of molecules (Chapter 4), on the experimental formation ofH2 on coronene up to 250 K (Chapter 5) and on the formation of solid water on dustat temperatures up to 85 K (Chapter 6). Several astrophysical implications are alsodiscussed.The results presented in Chapter 5 show how H2 can form in molecular clouds with dusttemperatures >20 K and this is extremely relevant to explain the efficient H2 and starformation in high redshift galaxies. Chapter 6 gives new insights on the formation oficy mantles that could be forming at higher temperature than previously demonstrated,being a significant way to explain the gas-phase elemental O depletion observed in suchconditions. Moreover, the disappearance of PAHs in the transition from diffuse to denseclouds could be explained by the dust grains starting to be covered by ice layers. InChapter 8 we study the effect of the high temperature experimental H2 formation onPAHs on the location of the dissociation front (DF) in a classical PDR picture, bymodelling it with Cloudy. From a basic implementation of the experimental results ofChapter 5 in the code, it has been challenging to quantify such effect. This underlineshow a lot of work still needs to be done on models to better match observations. InChapter 9 some questions regarding O depletion in translucent clouds and grain growthintroduced in Chapter 6 are addressed with Nautilus. By using an innovative strategy,we were able to reproduce C and O depletions in translucent cloud conditions by lockingthem in two separate surface species upon adsorption, reproducing the molecular structure ratio of organic carbonates.This Thesis shows the incredible catalytic nature of PAHs and their capacity to enablechemisorption processes for the formation of molecules at high dust temperatures. Thisis an important result that can be linked to the new discoveries reporting the possibilityof having grain growth at lower nH
Fiske, Thomas Haukli. "Correlation of Catalyst Morphology with Attrition Resistance and Catalytic Activity of Fischer-Tropsch Catalysts". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22778.
Texto completo da fontePaliga, James Francis. "Developing Earth-abundant metal-catalysts for hydrofunctionalisation". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31115.
Texto completo da fonteLarge, Benjamin. "Activation sélective de naphtalènes et synthèse d'architectures polycycliques étendues". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV070/document.
Texto completo da fonteBecause naphthalene has recently emerged as a fundamental platform in medicinal chemistry, the development of methodologies leading to diversely functionalised naphthalene-based platforms has become a prime concern of the scientific community. Indeed, experimental conditions previously optimised for benzene and other aromatic rings cannot always be applied to naphthalene. These methods can sometimes lead to different results, as a consequence of the lower aromaticity of the naphthalene core.In this context, this thesis is dedicated to the naphthalene and its derivatives. Various methods to selectively functionalise the different positions of the naphthalene core and synthetic pathways to extended polycyclic architectures were developed.Next, we focused on naphthalene precursors, especially on tetralones. Using a strategy involving a transient directing group, the position 8 of these bicycles was successfully arylated and the resulting compounds were successfully converted into other polycyclic platforms. In addition, DFT calculation have been used to explain the regioselectivity observed during the synthesis of extended fluorenones, and to study the mechanism of directed arylation of tetralones
Meyer, Simon [Verfasser]. "Carbide Materials as Catalysts and Catalyst Supports for Applications in Water Electrolysis and in Heterogeneous Catalysis / Simon Meyer". München : Verlag Dr. Hut, 2014. http://d-nb.info/1058284967/34.
Texto completo da fonteHruby, Sarah Lynn. "Catalytic domains in porous catalysts". [Ames, Iowa : Iowa State University], 2009.
Encontre o texto completo da fonteMcGregor, James. "Heterogeneous catalytic hydrogenation and dehydrogenation : catalysts and catalytic processes". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612796.
Texto completo da fonteRichardson, John Michael. "Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22704.
Texto completo da fonteGill, Christopher Stephen. "Novel hybrid organic/inorganic single-sited catalysts and supports for fine chemical and pharmaceutical intermediate synthesis". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28218.
Texto completo da fonteCommittee Chair: Jones, Christopher; Committee Member: Agrawal, Pradeep; Committee Member: Teja, Amyn; Committee Member: Weck, Marcus; Committee Member: Zhang, John.
Nguyen, Joseph Vu. "Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalysts". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6860.
Texto completo da fonteLivros sobre o assunto "Catalysie"
International Symposium on Catalyst Deactivation (8th 1999 Brugge, Belgium). Catalyst deactivation 1999: Proceedings of the 8th International Symposium, Brugge, Belgium, October 10-13, 1999. Amsterdam: Elsevier, 1999.
Encontre o texto completo da fonte1937-, Anderson James A., e Fernández Garcia Marcos, eds. Supported metals in catalysis. London: Imperial College Press, 2005.
Encontre o texto completo da fonteJ, Thomas W., ed. Principles and practice of heterogeneous catalysis. Weinheim: VCH, 1996.
Encontre o texto completo da fonteMa, Zhen, e Sheng Dai, eds. Heterogeneous Gold Catalysts and Catalysis. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621645.
Texto completo da fonte1959-, Regalbuto John R., ed. Handbook of catalyst preparation. Boca Raton: Taylor & Francis, 2007.
Encontre o texto completo da fonteH, Bartholomew Calvin, ed. Fundamentals of industrial catalytic processes. 2a ed. Hoboken, N.J: Wiley, 2005.
Encontre o texto completo da fonteWijngaarden, R. J. Industrial catalysis: Optimizing catalysts and processes. Weinheim: Wiley-VCH, 1998.
Encontre o texto completo da fonte1934-, Davis Burtron H., e Occelli Mario L. 1942-, eds. Fischer-Tropsch synthesis, catalysts and catalysis. Boston: Elsevier, 2007.
Encontre o texto completo da fonteFurimsky, Edward. Catalysts for upgrading heavy petroleum feeds. Amsterdam: Elsevier, 2007.
Encontre o texto completo da fonteFurimsky, Edward. Catalysts for upgrading heavy petroleum feeds. Amsterdam: Elsevier, 2004.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Catalysie"
Gao, Yuanfeng, Hong Lv, Yongwen Sun, Han Yao, Ding Hu e Cunman Zhang. "Enhancement of Acidic HER by Fe Doped CoP with Bimetallic Synergy". In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 465–74. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_45.
Texto completo da fonteDeng, Jiayao, Xiao Hu, Gnauizhi Xu, Zhanfeng Deng, Lan Yang, Ding Chen, Ming Zhou e Boyuan Tian. "The Preparation of Iridium-Based Catalyst with Different Melting Point-Metal Nitrate and Its OER Performance in Acid Media". In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 61–68. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_6.
Texto completo da fontePennington, John. "Catalysts and Catalysis". In An Introduction to Industrial Chemistry, 309–49. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0613-9_12.
Texto completo da fontePennington, J. "Catalysts and Catalysis". In an introduction to Industrial Chemistry, 304–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-6438-6_11.
Texto completo da fonteLloyd, Lawrie. "Catalytic Cracking Catalysts". In Handbook of Industrial Catalysts, 169–210. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-49962-8_5.
Texto completo da fonteDuan, Lunbo, e Lin Li. "Oxygen Carrier Aided Gasification (OCAG)". In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 79–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_5.
Texto completo da fonteShao, Z., e Y. H. Deng. "2.1.1 General Principles of Metal/Organocatalyst Dual Catalysis". In Dual Catalysis in Organic Synthesis 2. Stuttgart: Georg Thieme Verlag, 2020. http://dx.doi.org/10.1055/sos-sd-232-00002.
Texto completo da fonteBowker, Michael. "The reactive interface". In The Basis and Applications of Heterogenuous Catalysis. Oxford University Press, 1998. http://dx.doi.org/10.1093/hesc/9780198559580.003.0001.
Texto completo da fonteEngel, Paul. "2. Making things happen—catalysis". In Enzymes: A Very Short Introduction, 12–26. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198824985.003.0002.
Texto completo da fonteHaynes, Anthony. "Transition Metal Catalysed Methanol Carbonylation". In Contemporary Catalysis: Science, Technology, and Applications, 793–822. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781849739900-00793.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Catalysie"
Zhang, Aihua. "EXPERIMENTAL STUDY ON THE APPLICATION OF MACHINE LEARNING METHOD IN CATALYTIC MATERIALS". In Topics In Chemical & Material Engineering (TCME). Volkson Press, 2023. http://dx.doi.org/10.26480/smmp.01.2023.24.27.
Texto completo da fonteFuruya, Tomiaki, Terunobu Hayata, Susumu Yamanaka, Junji Koezuka, Toshiyuki Yoshine e Akio Ohkoshi. "Hybrid Catalytic Combustion for Stationary Gas Turbine: Concept and Small Scale Test Results". In ASME 1987 International Gas Turbine Conference and Exhibition. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/87-gt-99.
Texto completo da fonteHui, K. S., Christopher Y. H. Chao, C. W. Kwong e M. P. Wan. "Performance of Transition Metal Ions Exchanged Zeolite 13X in Greenhouse Gas Reduction". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41360.
Texto completo da fonteJayasuriya, Jeevan, Arturo Manrique, Reza Fakhrai, Jan Fredriksson e Torsten Fransson. "Experimental Investigations of Catalytic Combustion for High-Pressure Gas Turbine Applications". In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90986.
Texto completo da fonteWu, Quanwen, Wenhua Luo, Daqiao Meng, Jinchun Bao e Jingwen Ba. "High Efficient Detritiation Catalysts for Fusion Safety". In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81269.
Texto completo da fonteKawakami, Takashi, Tomiaki Furuya, Yukio Sasaki, Toshiyuki Yoshine, Yutaka Furuse e Mitsunobu Hoshino. "Feasibility Study on Honeycomb Ceramics for Catalytic Combustor". In ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-41.
Texto completo da fonteAktaş, Fatih, Kiran G. Burra e Ashwani K. Gupta. "Polyethylene Terephthalate Gasification Using CO2: Impact of SFCC Catalyst Contact Mode and Amount". In ASME 2024 Power Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/power2024-138167.
Texto completo da fonteInoue, Shuhei, Takeshi Nakajima, Kazuya Nomura e Yoshihiro Kikuchi. "Selective Synthesis of Single-Walled Carbon Nanotubes by Blending Catalysts". In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32524.
Texto completo da fonteManrique Carrera, Arturo, Jeevan Jayasuriya e Torsten Fransson. "Staged Lean Catalytic Combustion of Gasified Biomass for Gas Turbine Applications: An Experimental Approach to Investigate Performance of Catalysts". In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95339.
Texto completo da fonteKarkanis, Anastasios N., Pantelis N. Botsaris e Panagiotis D. Sparis. "A Catalyst Surface Control Automation System for Emission Reduction During Cold Start". In ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/icef2004-0865.
Texto completo da fonteRelatórios de organizações sobre o assunto "Catalysie"
Olsen, Daniel, Bryan Hackleman e Rodrigo Bauza Tellechaea. PR-179-16207-R01 Oxidation Catalyst Degradation on a 2-Stroke Lean-Burn NG Engine - Washing. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maio de 2019. http://dx.doi.org/10.55274/r0011586.
Texto completo da fonteStevens e Olsen. PR-179-12214-R01 CO Sensor Experimental Evaluation for Catalyst Health Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 2014. http://dx.doi.org/10.55274/r0010827.
Texto completo da fonteBadrinarayanan e Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), agosto de 2012. http://dx.doi.org/10.55274/r0010772.
Texto completo da fonteOlsen e Neuner. PR-179-12207-R01 Performance Measurements of Oxidation Catalyst on an Exhaust Slipstream. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), agosto de 2013. http://dx.doi.org/10.55274/r0010800.
Texto completo da fonteOlsen. PR-179-10203-R01 Characterization of Oxidation Catalyst Performance - VOCs and Temperature Variation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junho de 2012. http://dx.doi.org/10.55274/r0010753.
Texto completo da fonteSwanson, Dr Larry, e Christopher Samuelson. PR-362-06208-R01 Evaluation of Byproduct Emissions from Gas Turbine SCR Catalyst. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), fevereiro de 2009. http://dx.doi.org/10.55274/r0010978.
Texto completo da fonteDefoort, Willson e Olsen. L51849 Performance Evaluation of Exhaust Catalysts During the Initial Aging on Large Industrial Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junho de 2001. http://dx.doi.org/10.55274/r0011213.
Texto completo da fonteRioux, Robert M. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2014. http://dx.doi.org/10.21236/ada613847.
Texto completo da fonteBauza, Rodrigo, e Daniel Olsen. PR-179-20200-R01 Improved Catalyst Regeneration Process to Increase Poison Removal. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junho de 2021. http://dx.doi.org/10.55274/r0012106.
Texto completo da fonteDelgass, William Nicholas, Mahdi Abu-Omar, James Caruthers, Fabio Ribeiro, Kendall Thomson e William Schneider. Catalysis Science Initiative: Catalyst Design by Discovery Informatics. Office of Scientific and Technical Information (OSTI), julho de 2016. http://dx.doi.org/10.2172/1260972.
Texto completo da fonte