Artigos de revistas sobre o tema "Catalyse bioinspirée"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Catalyse bioinspirée".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Carrión, Erik N., Andrei Loas, Hemantbhai H. Patel, Marius Pelmuş, Karpagavalli Ramji e Sergiu M. Gorun. "Fluoroalkyl phthalocyanines: Bioinspired catalytic materials". Journal of Porphyrins and Phthalocyanines 22, n.º 05 (17 de abril de 2018): 371–97. http://dx.doi.org/10.1142/s1088424618500189.
Texto completo da fonteChen, Jing, Yingchun Guo, Tengteng Kang, Xingchi Liu, Xiaomei Wang e Xu Zhang. "In Situ Growth of ZIF-8 Nanocrystals on the Pore Walls of 3D Ordered Macroporous TiO2 for a One-Pot Cascade Reaction". Catalysts 11, n.º 5 (21 de abril de 2021): 533. http://dx.doi.org/10.3390/catal11050533.
Texto completo da fonteMonkcom, Emily C., Pradip Ghosh, Emma Folkertsma, Hidde A. Negenman, Martin Lutz e Robertus J. M. Klein Gebbink. "Bioinspired Non-Heme Iron Complexes: The Evolution of Facial N, N, O Ligand Design". CHIMIA International Journal for Chemistry 74, n.º 6 (24 de junho de 2020): 450–66. http://dx.doi.org/10.2533/chimia.2020.450.
Texto completo da fonteNothling, Mitchell D., Zeyun Xiao, Nicholas S. Hill, Mitchell T. Blyth, Ayana Bhaskaran, Marc-Antoine Sani, Andrea Espinosa-Gomez et al. "A multifunctional surfactant catalyst inspired by hydrolases". Science Advances 6, n.º 14 (abril de 2020): eaaz0404. http://dx.doi.org/10.1126/sciadv.aaz0404.
Texto completo da fonteGuo, Hao, Yu-Fei Ao, De-Xian Wang e Qi-Qiang Wang. "Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions". Beilstein Journal of Organic Chemistry 18 (2 de maio de 2022): 486–96. http://dx.doi.org/10.3762/bjoc.18.51.
Texto completo da fonteGao, Bin, Tao Wang, Yang Li, Xiaoli Fan, Hao Gong, Cheng Jiang, Peng Li, Xianli Huang e Jianping He. "Promoting hole transfer for photoelectrochemical water oxidation through a manganese cluster catalyst bioinspired by natural photosystem II". Chemical Communications 56, n.º 30 (2020): 4244–47. http://dx.doi.org/10.1039/d0cc00955e.
Texto completo da fonteDeuss, Peter J., René den Heeten, Wouter Laan e Paul C. J. Kamer. "Bioinspired Catalyst Design and Artificial Metalloenzymes". Chemistry - A European Journal 17, n.º 17 (23 de março de 2011): 4680–98. http://dx.doi.org/10.1002/chem.201003646.
Texto completo da fonteHunter, R. D., J. Davies, S. J. A. Hérou, A. Kulak e Z. Schnepp. "Milling as a route to porous graphitic carbons from biomass". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2209 (13 de setembro de 2021): 20200336. http://dx.doi.org/10.1098/rsta.2020.0336.
Texto completo da fonteSankar Agarwalla, Uday. "Bioinspired Non-heme Diiron Catalysts for Olefin Epoxidation with Hydrogen Peroxide in the Presence of Acetic Acid". International Journal of Science and Research (IJSR) 11, n.º 4 (5 de abril de 2022): 1089–93. http://dx.doi.org/10.21275/sr22403000114.
Texto completo da fontePhillips, Katherine R., Grant T. England, Steffi Sunny, Elijah Shirman, Tanya Shirman, Nicolas Vogel e Joanna Aizenberg. "A colloidoscope of colloid-based porous materials and their uses". Chemical Society Reviews 45, n.º 2 (2016): 281–322. http://dx.doi.org/10.1039/c5cs00533g.
Texto completo da fonteMangiavacchi, Francesca, Letizia Crociani, Luca Sancineto, Francesca Marini e Claudio Santi. "Continuous Bioinspired Oxidation of Sulfides". Molecules 25, n.º 11 (11 de junho de 2020): 2711. http://dx.doi.org/10.3390/molecules25112711.
Texto completo da fonteBhattacharya, Priyanka, Dan Du e Yuehe Lin. "Bioinspired nanoscale materials for biomedical and energy applications". Journal of The Royal Society Interface 11, n.º 95 (6 de junho de 2014): 20131067. http://dx.doi.org/10.1098/rsif.2013.1067.
Texto completo da fonteKung, Mayfair C., Mark V. Riofski, Michael N. Missaghi e Harold H. Kung. "Organosilicon platforms: bridging homogeneous, heterogeneous, and bioinspired catalysis". Chem. Commun. 50, n.º 25 (2014): 3262–76. http://dx.doi.org/10.1039/c3cc48766k.
Texto completo da fonteRen, Changxu, Peng Yang, Jiaonan Sun, Eric Y. Bi, Jinyu Gao, Jacob Palmer, Mengqiang Zhu, Yiying Wu e Jinyong Liu. "A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction". Journal of the American Chemical Society 143, n.º 21 (18 de maio de 2021): 7891–96. http://dx.doi.org/10.1021/jacs.1c00595.
Texto completo da fonteDeuss, Peter J., Rene den Heeten, Wouter Laan e Paul C. J. Kamer. "ChemInform Abstract: Bioinspired Catalyst Design and Artificial Metalloenzymes". ChemInform 42, n.º 31 (7 de julho de 2011): no. http://dx.doi.org/10.1002/chin.201131266.
Texto completo da fonteFogeron, Thibault, Jean-Philippe Porcher, Maria Gomez-Mingot, Tanya K. Todorova, Lise-Marie Chamoreau, Caroline Mellot-Draznieks, Yun Li e Marc Fontecave. "A cobalt complex with a bioinspired molybdopterin-like ligand: a catalyst for hydrogen evolution". Dalton Transactions 45, n.º 37 (2016): 14754–63. http://dx.doi.org/10.1039/c6dt01824f.
Texto completo da fonteZucca, Paolo, Gianmarco Cocco, Manuela Pintus, Antonio Rescigno e Enrico Sanjust. "Biomimetic Sulfide Oxidation by the Means of Immobilized Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphin under Mild Experimental Conditions". Journal of Chemistry 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/651274.
Texto completo da fonteHe, Fei, Li Mi, Yanfei Shen, Xinghua Chen, Yiran Yang, Hao Mei, Songqin Liu, Toshiyuki Mori e Yuanjian Zhang. "Driving electrochemical oxygen reduction and hydrazine oxidation reaction by enzyme-inspired polymeric Cu(3,3′-diaminobenzidine) catalyst". Journal of Materials Chemistry A 5, n.º 33 (2017): 17413–20. http://dx.doi.org/10.1039/c7ta05183b.
Texto completo da fonteFarooq, Umera, Muhammad Fiaz, Hina Nawaz, Kashif Abdullah, Zahid Asghar Bajwa, Roman Azeem, Shumaila Ashraf e Muhammad Sharjeel. "Bioinspired Synthesis of Novel Different Nanoparticles and its Utility in Biodiesel and Animals Applications". Haya: The Saudi Journal of Life Sciences 9, n.º 10 (16 de outubro de 2024): 390–96. http://dx.doi.org/10.36348/sjls.2024.v09i10.003.
Texto completo da fonteBour, James R., Ashley M. Wright, Xin He e Mircea Dincă. "Bioinspired chemistry at MOF secondary building units". Chemical Science 11, n.º 7 (2020): 1728–37. http://dx.doi.org/10.1039/c9sc06418d.
Texto completo da fonteChaignon, Jérémy, Marie Gourgues, Lhoussain Khrouz, Nicolás Moliner, Laurent Bonneviot, Fabienne Fache, Isabel Castro e Belén Albela. "A bioinspired heterogeneous catalyst based on the model of the manganese-dependent dioxygenase for selective oxidation using dioxygen". RSC Advances 7, n.º 28 (2017): 17336–45. http://dx.doi.org/10.1039/c7ra00514h.
Texto completo da fonteSignorella, Sandra, e Christelle Hureau. "Bioinspired functional mimics of the manganese catalases". Coordination Chemistry Reviews 256, n.º 11-12 (junho de 2012): 1229–45. http://dx.doi.org/10.1016/j.ccr.2012.02.003.
Texto completo da fonteTibbetts, Isobel, e George Kostakis. "Recent Bio-Advances in Metal-Organic Frameworks". Molecules 25, n.º 6 (12 de março de 2020): 1291. http://dx.doi.org/10.3390/molecules25061291.
Texto completo da fonteLargeron, Martine. "Aerobic catalytic systems inspired by copper amine oxidases". Pure and Applied Chemistry 92, n.º 2 (25 de fevereiro de 2020): 233–42. http://dx.doi.org/10.1515/pac-2019-0107.
Texto completo da fonteFord, Courtney L., Yun Ji Park, Ellen M. Matson, Zachary Gordon e Alison R. Fout. "A bioinspired iron catalyst for nitrate and perchlorate reduction". Science 354, n.º 6313 (10 de novembro de 2016): 741–43. http://dx.doi.org/10.1126/science.aah6886.
Texto completo da fonteMouchfiq, Ahmed, Tanya K. Todorova, Subal Dey, Marc Fontecave e Victor Mougel. "A bioinspired molybdenum–copper molecular catalyst for CO2 electroreduction". Chemical Science 11, n.º 21 (2020): 5503–10. http://dx.doi.org/10.1039/d0sc01045f.
Texto completo da fonteSimakova, Antonina, Matthew Mackenzie, Saadyah E. Averick, Sangwoo Park e Krzysztof Matyjaszewski. "Bioinspired Iron-Based Catalyst for Atom Transfer Radical Polymerization". Angewandte Chemie 125, n.º 46 (23 de setembro de 2013): 12370–73. http://dx.doi.org/10.1002/ange.201306337.
Texto completo da fonteSimakova, Antonina, Matthew Mackenzie, Saadyah E. Averick, Sangwoo Park e Krzysztof Matyjaszewski. "Bioinspired Iron-Based Catalyst for Atom Transfer Radical Polymerization". Angewandte Chemie International Edition 52, n.º 46 (23 de setembro de 2013): 12148–51. http://dx.doi.org/10.1002/anie.201306337.
Texto completo da fonteLi, Guangxun, Zhuo Tang, Hongxin Liu, Ying-wei Wang e Shiqi Zhang. "Bioinspired Catalysis: Self-Assembly of a Protein and DNA as a Catalyst for the Aldol Reaction in Aqueous Media". Synlett 29, n.º 05 (20 de dezembro de 2017): 560–65. http://dx.doi.org/10.1055/s-0036-1591854.
Texto completo da fonteShteinman, Albert A. "Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts". Catalysts 13, n.º 2 (15 de fevereiro de 2023): 415. http://dx.doi.org/10.3390/catal13020415.
Texto completo da fonteWennemers, Helma. "Peptides – Molecular Allrounders". CHIMIA International Journal for Chemistry 75, n.º 6 (30 de junho de 2021): 525–29. http://dx.doi.org/10.2533/chimia.2021.525.
Texto completo da fonteCox, Nicholas, Dimitrios A. Pantazis, Frank Neese e Wolfgang Lubitz. "Artificial photosynthesis: understanding water splitting in nature". Interface Focus 5, n.º 3 (6 de junho de 2015): 20150009. http://dx.doi.org/10.1098/rsfs.2015.0009.
Texto completo da fonteLin, Yuehe, e Dan (Annie) Du. "(Invited) New Bioinspired Nanomaterials for Biosensing and Cancer Theranostics". ECS Meeting Abstracts MA2022-01, n.º 53 (7 de julho de 2022): 2202. http://dx.doi.org/10.1149/ma2022-01532202mtgabs.
Texto completo da fonteBagi, Nárcisz, József Kaizer e Gábor Speier. "Oxidation of thiols to disulfides by dioxygen catalyzed by a bioinspired organocatalyst". RSC Advances 5, n.º 57 (2015): 45983–86. http://dx.doi.org/10.1039/c5ra05529f.
Texto completo da fonteBrimblecombe, Robin, Annette Koo, G. Charles Dismukes, Gerhard F. Swiegers e Leone Spiccia. "Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst". Journal of the American Chemical Society 132, n.º 9 (10 de março de 2010): 2892–94. http://dx.doi.org/10.1021/ja910055a.
Texto completo da fonteGorun, Sergiu M. "Industrial applications of bioinspired catalysis: The anatomy of a catalyst". Journal of Inorganic Biochemistry 59, n.º 2-3 (agosto de 1995): 615. http://dx.doi.org/10.1016/0162-0134(95)97706-v.
Texto completo da fonteLee, Way-Zen, Tzu-Li Wang, Hao-Ching Chang, Yi-Ting Chen e Ting-Shen Kuo. "A Bioinspired ZnII/FeIII Heterobimetallic Catalyst for Thia-Michael Addition". Organometallics 31, n.º 11 (21 de maio de 2012): 4106–9. http://dx.doi.org/10.1021/om300275a.
Texto completo da fonteKarlsson, Erik A., Bao-Lin Lee, Torbjörn Åkermark, Eric V. Johnston, Markus D. Kärkäs, Junliang Sun, Örjan Hansson, Jan-E. Bäckvall e Björn Åkermark. "Photosensitized Water Oxidation by Use of a Bioinspired Manganese Catalyst". Angewandte Chemie International Edition 50, n.º 49 (7 de outubro de 2011): 11715–18. http://dx.doi.org/10.1002/anie.201104355.
Texto completo da fonteKarlsson, Erik A., Bao-Lin Lee, Torbjörn Åkermark, Eric V. Johnston, Markus D. Kärkäs, Junliang Sun, Örjan Hansson, Jan-E. Bäckvall e Björn Åkermark. "Photosensitized Water Oxidation by Use of a Bioinspired Manganese Catalyst". Angewandte Chemie 123, n.º 49 (7 de outubro de 2011): 11919–22. http://dx.doi.org/10.1002/ange.201104355.
Texto completo da fonteMalini, S., Kalyan Raj, S. Madhumathy, Khalid Mohamed El-Hady, Saiful Islam e Mycal Dutta. "Bioinspired Advances in Nanomaterials for Sustainable Agriculture". Journal of Nanomaterials 2022 (29 de abril de 2022): 1–11. http://dx.doi.org/10.1155/2022/8926133.
Texto completo da fonteLancaster, Louis, David P. Hickey, Matthew S. Sigman, Shelley D. Minteer e Ian Wheeldon. "Bioinspired design of a hybrid bifunctional enzymatic/organic electrocatalyst for site selective alcohol oxidation". Chemical Communications 54, n.º 5 (2018): 491–94. http://dx.doi.org/10.1039/c7cc08548f.
Texto completo da fonteMauzeroll, Janine. "Bioinspired Nanomaterial Synthesis and Applications in Catalysis". ECS Meeting Abstracts MA2022-01, n.º 50 (7 de julho de 2022): 2114. http://dx.doi.org/10.1149/ma2022-01502114mtgabs.
Texto completo da fontevan Vliet, Liisa D., Pierre-Yves Colin e Florian Hollfelder. "Bioinspired genotype–phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins". Interface Focus 5, n.º 4 (6 de agosto de 2015): 20150035. http://dx.doi.org/10.1098/rsfs.2015.0035.
Texto completo da fonteBrudvig, Gary W. "(Invited) Water Oxidation Catalysis with Atomically Defined Active Sites on Nanostructured Materials for Solar Energy Applications". ECS Meeting Abstracts MA2023-01, n.º 37 (28 de agosto de 2023): 2149. http://dx.doi.org/10.1149/ma2023-01372149mtgabs.
Texto completo da fonteJimeno, Ciril. "Amino Acylguanidines as Bioinspired Catalysts for the Asymmetric Aldol Reaction". Molecules 26, n.º 4 (5 de fevereiro de 2021): 826. http://dx.doi.org/10.3390/molecules26040826.
Texto completo da fonteHisaeda, Yoshio, Keishiro Tahara, Hisashi Shimakoshi e Takahiro Masuko. "Bioinspired catalytic reactions with vitamin B12 derivative and photosensitizers". Pure and Applied Chemistry 85, n.º 7 (10 de abril de 2013): 1415–26. http://dx.doi.org/10.1351/pac-con-12-10-05.
Texto completo da fonteJi, Chunqing, Shanshan Liu, Kongzhao Su, El-Sayed M. El-Sayed, Heyuan Liu, Wenjing Wang, Fenglei Qiu, Xiyou Li e Daqiang Yuan. "Pyrogallol[4]arene Coordination Nanocapsule Micelle as Bioinspired Water Reduction Catalyst". ACS Materials Letters 3, n.º 9 (11 de agosto de 2021): 1315–20. http://dx.doi.org/10.1021/acsmaterialslett.1c00362.
Texto completo da fonteKühn, Ulrike, Sabine Warzeska, Hans Pritzkow e Roland Krämer. "A Bioinspired Dicopper(II) Catalyst for the Transesterification of Dimethyl Phosphate". Journal of the American Chemical Society 123, n.º 33 (agosto de 2001): 8125–26. http://dx.doi.org/10.1021/ja015562c.
Texto completo da fonteLifschitz, Alejo M., Ryan M. Young, Jose Mendez-Arroyo, C. Michael McGuirk, Michael R. Wasielewski e Chad A. Mirkin. "Cooperative Electronic and Structural Regulation in a Bioinspired Allosteric Photoredox Catalyst". Inorganic Chemistry 55, n.º 17 (10 de maio de 2016): 8301–8. http://dx.doi.org/10.1021/acs.inorgchem.6b00095.
Texto completo da fonteBortoli, Marco, Francesco Zaccaria, Marco Dalla Tiezza, Matteo Bruschi, Célia Fonseca Guerra, F. Matthias Bickelhaupt e Laura Orian. "Oxidation of organic diselenides and ditellurides by H2O2for bioinspired catalyst design". Physical Chemistry Chemical Physics 20, n.º 32 (2018): 20874–85. http://dx.doi.org/10.1039/c8cp02748j.
Texto completo da fonte